This paper is concerned with the existence of unstable stationary solutions for nonlinear stochastic differential equations (SDEs) with additive white noise. Assume that the nonlinear term $ f $ is monotone (or anti-monotone) and the global Lipschitz constant of $ f $ is smaller than the positive real part of the principal eigenvalue of the competitive matrix $ A $, the random dynamical system (RDS) generated by SDEs has an unstable $ \mathscr{F}_+ $-measurable random equilibrium, which produces a stationary solution for nonlinear SDEs. Here, $ \mathscr{F}_+ = \sigma\{\omega\mapsto W_t(\omega):t\geq0\} $ is the future $ \sigma $-algebra. In addition, we get that the $ \alpha $-limit set of all pull-back trajectories starting at the initial value $ x(0) = x\in\mathbb{R}^n $ is a single point for all $ \omega\in\Omega $, i.e., the unstable $ \mathscr{F}_+ $-measurable random equilibrium. Applications to stochastic neural network models are given.
Citation: |
[1] |
L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-12878-7.![]() ![]() ![]() |
[2] |
I. Chueshov, Monotone Random Systems Theory and Applications, Lecture Notes in Mathematics, vol. 1779, Springer-Verlag, Berlin, 2002.
doi: 10.1007/b83277.![]() ![]() ![]() |
[3] |
J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Nat. Acad. Sci. U.S.A., 79 (1982), 2554-2558.
doi: 10.1073/pnas.79.8.2554.![]() ![]() ![]() |
[4] |
J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-stage neurons, Proc. Nat. Acad. Sci., 81 (1984), 3088-3092.
doi: 10.1073/pnas.81.10.3088.![]() ![]() |
[5] |
J. Jiang and X. Lv, A small-gain theorem for nonlinear stochastic systems with inputs and outputs I: Additive white noise, SIAM J. Control Optim., 54 (2016), 2383-2402.
doi: 10.1137/15M1044047.![]() ![]() ![]() |
[6] |
J. Jiang and X. Lv, Global stability of feedback systems with multiplicative noise on the nonnegative orthant, SIAM J. Control Optim., 56 (2018), 2218-2247.
doi: 10.1137/16M1101076.![]() ![]() ![]() |
[7] |
R. Kha'sminskii, Stochastic Stability of Differential Equations, Alphen: Sijtjoff and Noordhoff, 1980.
![]() |
[8] |
H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, Cambridge, 1990.
![]() ![]() |
[9] |
X. Li and X. Mao, Stabilisation of highly nonlinear hybrid stochastic differential delay equations by delay feedback control, Automatica, 112 (2020), 108657.
doi: 10.1016/j.automatica.2019.108657.![]() ![]() ![]() |
[10] |
X. Mao, Stochastic Differential Equations and Applications, Horwood, Chichester, 1997.
![]() ![]() |
[11] |
X. Mao, Stochastic versions of the LaSalle theorem, J. Differential Equations, 153 (1999), 175-195.
doi: 10.1006/jdeq.1998.3552.![]() ![]() ![]() |
[12] |
X. Mao, Stabilization of continuous-time hybrid stochastic differential equations by discrete-time feedback control, Automatica, 49 (2013), 3677-3681.
doi: 10.1016/j.automatica.2013.09.005.![]() ![]() ![]() |
[13] |
M. Marcondes de Freitas and E. D. Sontag, A small-gain theorem for random dynamical systems with inputs and outputs, SIAM J. Control Optim., 53 (2015), 2657-2695.
doi: 10.1137/140991340.![]() ![]() ![]() |
[14] |
B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, 5th ed., Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-03620-4.![]() ![]() ![]() |
[15] |
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society, 1995.
![]() ![]() |
[16] |
P. van den Driessche and X. Zou, Global attractivity in delayed Hopfield neural network models, SIAM J. Appl. Math., 58 (1998), 1878-1890.
doi: 10.1137/S0036139997321219.![]() ![]() ![]() |
[17] |
J. Wu, Symmetric functional differential equations and neural networks with memory, Trans. Amer. Math. Soc., 350 (1998), 4799-4838.
doi: 10.1090/S0002-9947-98-02083-2.![]() ![]() ![]() |