• Previous Article
    Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation
  • DCDS-B Home
  • This Issue
  • Next Article
    Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction
doi: 10.3934/dcdsb.2021138
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Global population dynamics of a single species structured with distinctive time-varying maturation and self-limitation delays

1. 

School of Mathematics and Statistics, Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science and Technology, Changsha, 410114, China

2. 

Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, Toronto, M3J 1P3, Canada

* Corresponding author: Jianhong Wu

Received  September 2020 Revised  February 2021 Early access May 2021

Fund Project: This work was supported by the National Natural Science Foundation of China (No. 11971076), the Natural Sciences and Engineering Research Council of Canada, and the Canada Research Chairs program

We consider the classical Nicholson's blowflies model incorporating two distinctive time-varying delays. One of the delays corresponds to the length of the individual's life cycle, and another corresponds to the specific physiological stage when self-limitation feedback takes place. Unlike the classical formulation of Nicholson's blowflies equation where self-regulation appears due to the competition of the productive adults for resources, the self-limitation of our considered model can occur at any developmental stage of an individual during the entire life cycle. We aim to find sharp conditions for the global asymptotic stability of a positive equilibrium. This is a significant challenge even when both delays are held at constant values. Here, we develop an approach to obtain a sharp and explicit criterion in an important situation where the two delays are asymptotically apart. Our approach can be also applied to the non-autonomous Mackey-Glass equation to provide a partial solution to an open problem about the global dynamics.

Citation: Chuangxia Huang, Lihong Huang, Jianhong Wu. Global population dynamics of a single species structured with distinctive time-varying maturation and self-limitation delays. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021138
References:
[1]

L. Berezansky and E. Braverman, A note on stability of Mackey-Glass equations with two delays, J. Math. Anal. Appl., 450 (2017), 1208-1228.  doi: 10.1016/j.jmaa.2017.01.050.  Google Scholar

[2]

L. Berezansky and E. Braverman, Boundedness and persistence of delay differential equations with mixed nonlinearity, Appl. Math. Comput., 279 (2016), 154-169.  doi: 10.1016/j.amc.2016.01.015.  Google Scholar

[3]

L. BerezanskyJ. BastinecJ. Diblík and Z. Smarda, On a delay population model with quadratic nonlinearity, Adv. Difference Equ., 2012 (2012), 1-9.  doi: 10.1186/1687-1847-2012-230.  Google Scholar

[4]

L. Berezansky and E. Braverman, Global linearized stability theory for delay differential equations, Nonlinear Anal., 71 (2009), 2614-2624.  doi: 10.1016/j.na.2009.01.147.  Google Scholar

[5]

L. BerezanskyE. Braverman and E. Idels, Nicholson's blowflies differential equations revisited: Main results and open problems, Appl. Math. Model., 34 (2010), 1405-1417.  doi: 10.1016/j.apm.2009.08.027.  Google Scholar

[6]

Q. CaoG. WangH. Zhang and S. Gong, New results on global asymptotic stability for a nonlinear density-dependent mortality Nicholson's blowflies model with multiple pairs of time-varying delays, J. Inequal. Appl., 7 (2020), 1-12.  doi: 10.1186/s13660-019-2277-2.  Google Scholar

[7]

Y. Chen, Periodic solutions of delayed periodic Nicholson's blowflies models, Canad. Appl. Math. Quart., 11 (2003), 23-28.   Google Scholar

[8]

H. El-Morshedy and A. Ruiz-Herrera, Global convergence to equilibria in non-monotone delay differential equations, Proc. Amer. Math. Soc., 147 (2019), 2095-2105.  doi: 10.1090/proc/14360.  Google Scholar

[9]

I. GyőriF. Hartung and N. Mohamady, Permanence in a class of delay differential equations with mixed monotonicitys, Electronic J. Qual. Theory Differ. Equ., 53 (2018), 1-21.  doi: 10.14232/ejqtde.2018.1.53.  Google Scholar

[10]

C. HuangZ. YangT. Yi and X. Zou, On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities, J. Diff. Equ., 256 (2014), 2101-2114.  doi: 10.1016/j.jde.2013.12.015.  Google Scholar

[11]

C. HuangX. ZhaoJ. Cao and F. Alsaadi, Global dynamics of neoclassical growth model with multiple pairs of variable delays, Nonlinearity, 33 (2020), 6819-6834.  doi: 10.1088/1361-6544/abab4e.  Google Scholar

[12]

C. Huang and Y. Tan, Global behavior of a reaction-diffusion model with time delay and Dirichlet condition, J. Differ. Equ., 271 (2021), 186-215.  doi: 10.1016/j.jde.2020.08.008.  Google Scholar

[13]

C. HuangY. TanB. Sun and T. Wang, Dynamics of a class of delayed reaction-diffusion systems with Neumann boundary condition, J. Math. Anal. Appl., 458 (2018), 1115-1130.  doi: 10.1016/j.jmaa.2017.09.045.  Google Scholar

[14]

X. Long, Novel stability criteria on a patch structure nicholson's blowflies model with multiple pairs of time-varying delays, AIMS Mathematics, 5 (2020), 7387-7401.  doi: 10.3934/math.2020473.  Google Scholar

[15]

Y. Muroya, Global stability for separable nonlinear delay differential equations, Comput. Math. Appl., 49 (2005), 1913-1927.  doi: 10.1016/j.camwa.2004.02.013.  Google Scholar

[16]

C. Qian and Y. Hu, Novel stability criteria on nonlinear density-dependent mortality nicholson's blowflies systems in asymptotically almost periodic environments, J. Inequal. Appl., 2020 (2020), 1-18.  doi: 10.1186/s13660-019-2275-4.  Google Scholar

[17]

H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, New York, 2011. doi: 10.1007/978-1-4419-7646-8.  Google Scholar

[18]

J. So and J. Yu, Global attractivity and uniform persistence in Nicholson's blowflies, Diff. Equ. & Dyn. Sys., 2 (1994), 11-18.   Google Scholar

[19]

D. SonL. HienB and T. Tuan Anh, Global attractivity of positive periodic solution of a delayed Nicholson model with nonlinear density-dependent mortality term, J. Qual. Theory Differ. Equ., 2019 (2019), 1-21.  doi: 10.14232/ejqtde.2019.1.8.  Google Scholar

[20]

Y. Xu, New stability theorem for periodic Nicholson's model with mortality term, Appl. Math. Lett., 94 (2019), 59-65.  doi: 10.1016/j.aml.2019.02.021.  Google Scholar

[21]

Y. Xu, Q. Cao and X. Guo, Stability on a patch structure nicholson's blowflies system involving distinctive delays, Appl. Math. Lett., 105 (2020), 106340, 7pp. doi: 10.1016/j.aml.2020.106340.  Google Scholar

[22]

L. Yao, Dynamics of Nicholson's blowflies models with a nonlinear density-dependent mortality, Appl. Math. Model., 64 (2018), 185-195.  doi: 10.1016/j.apm.2018.07.007.  Google Scholar

[23]

X. Zhang and J. Wu, Implication of vector attachment and host grooming behaviours for vector population dynamics and vector-on-host distribution patterns, Appl. Math. Model., 81 (2020), 1-15.  doi: 10.1016/j.apm.2019.12.012.  Google Scholar

[24]

C. ZhaoL. Debnath and K. Wang, Positive periodic solutions of a delayed model in population, Appl. Math. Lett., 16 (2003), 561-565.  doi: 10.1016/S0893-9659(03)00037-5.  Google Scholar

show all references

References:
[1]

L. Berezansky and E. Braverman, A note on stability of Mackey-Glass equations with two delays, J. Math. Anal. Appl., 450 (2017), 1208-1228.  doi: 10.1016/j.jmaa.2017.01.050.  Google Scholar

[2]

L. Berezansky and E. Braverman, Boundedness and persistence of delay differential equations with mixed nonlinearity, Appl. Math. Comput., 279 (2016), 154-169.  doi: 10.1016/j.amc.2016.01.015.  Google Scholar

[3]

L. BerezanskyJ. BastinecJ. Diblík and Z. Smarda, On a delay population model with quadratic nonlinearity, Adv. Difference Equ., 2012 (2012), 1-9.  doi: 10.1186/1687-1847-2012-230.  Google Scholar

[4]

L. Berezansky and E. Braverman, Global linearized stability theory for delay differential equations, Nonlinear Anal., 71 (2009), 2614-2624.  doi: 10.1016/j.na.2009.01.147.  Google Scholar

[5]

L. BerezanskyE. Braverman and E. Idels, Nicholson's blowflies differential equations revisited: Main results and open problems, Appl. Math. Model., 34 (2010), 1405-1417.  doi: 10.1016/j.apm.2009.08.027.  Google Scholar

[6]

Q. CaoG. WangH. Zhang and S. Gong, New results on global asymptotic stability for a nonlinear density-dependent mortality Nicholson's blowflies model with multiple pairs of time-varying delays, J. Inequal. Appl., 7 (2020), 1-12.  doi: 10.1186/s13660-019-2277-2.  Google Scholar

[7]

Y. Chen, Periodic solutions of delayed periodic Nicholson's blowflies models, Canad. Appl. Math. Quart., 11 (2003), 23-28.   Google Scholar

[8]

H. El-Morshedy and A. Ruiz-Herrera, Global convergence to equilibria in non-monotone delay differential equations, Proc. Amer. Math. Soc., 147 (2019), 2095-2105.  doi: 10.1090/proc/14360.  Google Scholar

[9]

I. GyőriF. Hartung and N. Mohamady, Permanence in a class of delay differential equations with mixed monotonicitys, Electronic J. Qual. Theory Differ. Equ., 53 (2018), 1-21.  doi: 10.14232/ejqtde.2018.1.53.  Google Scholar

[10]

C. HuangZ. YangT. Yi and X. Zou, On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities, J. Diff. Equ., 256 (2014), 2101-2114.  doi: 10.1016/j.jde.2013.12.015.  Google Scholar

[11]

C. HuangX. ZhaoJ. Cao and F. Alsaadi, Global dynamics of neoclassical growth model with multiple pairs of variable delays, Nonlinearity, 33 (2020), 6819-6834.  doi: 10.1088/1361-6544/abab4e.  Google Scholar

[12]

C. Huang and Y. Tan, Global behavior of a reaction-diffusion model with time delay and Dirichlet condition, J. Differ. Equ., 271 (2021), 186-215.  doi: 10.1016/j.jde.2020.08.008.  Google Scholar

[13]

C. HuangY. TanB. Sun and T. Wang, Dynamics of a class of delayed reaction-diffusion systems with Neumann boundary condition, J. Math. Anal. Appl., 458 (2018), 1115-1130.  doi: 10.1016/j.jmaa.2017.09.045.  Google Scholar

[14]

X. Long, Novel stability criteria on a patch structure nicholson's blowflies model with multiple pairs of time-varying delays, AIMS Mathematics, 5 (2020), 7387-7401.  doi: 10.3934/math.2020473.  Google Scholar

[15]

Y. Muroya, Global stability for separable nonlinear delay differential equations, Comput. Math. Appl., 49 (2005), 1913-1927.  doi: 10.1016/j.camwa.2004.02.013.  Google Scholar

[16]

C. Qian and Y. Hu, Novel stability criteria on nonlinear density-dependent mortality nicholson's blowflies systems in asymptotically almost periodic environments, J. Inequal. Appl., 2020 (2020), 1-18.  doi: 10.1186/s13660-019-2275-4.  Google Scholar

[17]

H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, New York, 2011. doi: 10.1007/978-1-4419-7646-8.  Google Scholar

[18]

J. So and J. Yu, Global attractivity and uniform persistence in Nicholson's blowflies, Diff. Equ. & Dyn. Sys., 2 (1994), 11-18.   Google Scholar

[19]

D. SonL. HienB and T. Tuan Anh, Global attractivity of positive periodic solution of a delayed Nicholson model with nonlinear density-dependent mortality term, J. Qual. Theory Differ. Equ., 2019 (2019), 1-21.  doi: 10.14232/ejqtde.2019.1.8.  Google Scholar

[20]

Y. Xu, New stability theorem for periodic Nicholson's model with mortality term, Appl. Math. Lett., 94 (2019), 59-65.  doi: 10.1016/j.aml.2019.02.021.  Google Scholar

[21]

Y. Xu, Q. Cao and X. Guo, Stability on a patch structure nicholson's blowflies system involving distinctive delays, Appl. Math. Lett., 105 (2020), 106340, 7pp. doi: 10.1016/j.aml.2020.106340.  Google Scholar

[22]

L. Yao, Dynamics of Nicholson's blowflies models with a nonlinear density-dependent mortality, Appl. Math. Model., 64 (2018), 185-195.  doi: 10.1016/j.apm.2018.07.007.  Google Scholar

[23]

X. Zhang and J. Wu, Implication of vector attachment and host grooming behaviours for vector population dynamics and vector-on-host distribution patterns, Appl. Math. Model., 81 (2020), 1-15.  doi: 10.1016/j.apm.2019.12.012.  Google Scholar

[24]

C. ZhaoL. Debnath and K. Wang, Positive periodic solutions of a delayed model in population, Appl. Math. Lett., 16 (2003), 561-565.  doi: 10.1016/S0893-9659(03)00037-5.  Google Scholar

Figure 1.  Numerical solutions $ x(t) $ to (17) with the two delays $ h(t) $ and $ g(t) $ given by (18) and different initial values $ 6 $, $ 15 $, $ 20 $
Figure 2.  Numerical solutions $ x(t) $ to (17) with delays given in (19) and different initial values $ 5 $, $ 17 $, $ 30 $
Figure 3.  Numerical solutions $ x(t) $ to (17) with delays given in (20) and different initial values $ 6 $, $ 15 $, $ 20 $
[1]

Tarik Mohammed Touaoula. Global stability for a class of functional differential equations (Application to Nicholson's blowflies and Mackey-Glass models). Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4391-4419. doi: 10.3934/dcds.2018191

[2]

Ahmed Elhassanein. Complex dynamics of a forced discretized version of the Mackey-Glass delay differential equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 93-105. doi: 10.3934/dcdsb.2015.20.93

[3]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[4]

Carlos Nonato, Manoel Jeremias dos Santos, Carlos Raposo. Dynamics of Timoshenko system with time-varying weight and time-varying delay. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021053

[5]

Xiao Wang, Zhaohui Yang, Xiongwei Liu. Periodic and almost periodic oscillations in a delay differential equation system with time-varying coefficients. Discrete & Continuous Dynamical Systems, 2017, 37 (12) : 6123-6138. doi: 10.3934/dcds.2017263

[6]

Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024

[7]

Wenjun Liu, Biqing Zhu, Gang Li, Danhua Wang. General decay for a viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term. Evolution Equations & Control Theory, 2017, 6 (2) : 239-260. doi: 10.3934/eect.2017013

[8]

Xin-Guang Yang, Jing Zhang, Shu Wang. Stability and dynamics of a weak viscoelastic system with memory and nonlinear time-varying delay. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1493-1515. doi: 10.3934/dcds.2020084

[9]

Yangzi Hu, Fuke Wu. The improved results on the stochastic Kolmogorov system with time-varying delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1481-1497. doi: 10.3934/dcdsb.2015.20.1481

[10]

Lijuan Wang, Yashan Xu. Admissible controls and controllable sets for a linear time-varying ordinary differential equation. Mathematical Control & Related Fields, 2018, 8 (3&4) : 1001-1019. doi: 10.3934/mcrf.2018043

[11]

Chuangxia Huang, Hua Zhang, Lihong Huang. Almost periodicity analysis for a delayed Nicholson's blowflies model with nonlinear density-dependent mortality term. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3337-3349. doi: 10.3934/cpaa.2019150

[12]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[13]

A. R. Humphries, O. A. DeMasi, F. M. G. Magpantay, F. Upham. Dynamics of a delay differential equation with multiple state-dependent delays. Discrete & Continuous Dynamical Systems, 2012, 32 (8) : 2701-2727. doi: 10.3934/dcds.2012.32.2701

[14]

Di Wu, Yanqin Bai, Fusheng Xie. Time-scaling transformation for optimal control problem with time-varying delay. Discrete & Continuous Dynamical Systems - S, 2020, 13 (6) : 1683-1695. doi: 10.3934/dcdss.2020098

[15]

Hongbiao Fan, Jun-E Feng, Min Meng. Piecewise observers of rectangular discrete fuzzy descriptor systems with multiple time-varying delays. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1535-1556. doi: 10.3934/jimo.2016.12.1535

[16]

Shangzhi Li, Shangjiang Guo. Dynamics of a stage-structured population model with a state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3523-3551. doi: 10.3934/dcdsb.2020071

[17]

Dinh Cong Huong, Mai Viet Thuan. State transformations of time-varying delay systems and their applications to state observer design. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 413-444. doi: 10.3934/dcdss.2017020

[18]

K. Aruna Sakthi, A. Vinodkumar. Stabilization on input time-varying delay for linear switched systems with truncated predictor control. Numerical Algebra, Control & Optimization, 2020, 10 (2) : 237-247. doi: 10.3934/naco.2019050

[19]

Mokhtar Kirane, Belkacem Said-Houari, Mohamed Naim Anwar. Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks. Communications on Pure & Applied Analysis, 2011, 10 (2) : 667-686. doi: 10.3934/cpaa.2011.10.667

[20]

Hongjie Dong, Seick Kim. Green's functions for parabolic systems of second order in time-varying domains. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1407-1433. doi: 10.3934/cpaa.2014.13.1407

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (97)
  • HTML views (196)
  • Cited by (0)

Other articles
by authors

[Back to Top]