
- Previous Article
- DCDS-B Home
- This Issue
-
Next Article
A viral transmission model for foxes-cottontails-hares interaction: Infection through predation
A three-country Kaldorian business cycle model with fixed exchange rates: A continuous time analysis
1. | Department of Quantitative Methods and Informatics, Faculty of Economics, Matej Bel University, Tajovského 10,975 50 Banská Bystrica, Slovakia |
2. | Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina F1, 84 248 Bratislava, Slovakia |
3. | Faculty of Economics, Chuo University, 742-1 Higashinakano, Tokyo 192-0393, Japan |
4. | School of Education, Waseda University, 1-6-1 Nishiwaseda, Shinjuku, Tokyo 169-8050, Japan |
This paper analyses a three-country, fixed exchange rates Kaldorian nonlinear macroeconomic model of business cycles. The countries are connected through international trade, and international capital movement with imperfect capital mobility. Our model is a continuous time version of the discrete time three-country Kaldorian model of Inaba and Asada [
References:
[1] |
T. Asada,
Kaldorian dynamics in an open economy, J. Econ., 62 (1995), 239-269.
doi: 10.1007/BF01238819. |
[2] |
T. Asada,
A two-regional model of business cycles with fixed exchange rates : A Kaldorian approach, Studies in Regional Sciences, 34 (2004), 19-38.
doi: 10.2457/srs.34.2_19. |
[3] |
T. Asada, C. Chiarella, P. Flaschel and R. Franke, Open Economy Macrodynamics: An Integrated Disequilibrium Approach, Springer-Verlag, Berlin, 2003. |
[4] |
T. Asada, C. Chiarella, P. Flaschel and R. Franke, Monetary Macrodynamics, Routledge, London, 2010.
doi: 10.4324/9780203859964. |
[5] |
T. Asada, M. Demetrian and R. Zimka,
On dynamics in a Keynesian model of monetary and fiscal policy with debt effect, Commun. Nonlinear Sci. Numer. Simul., 58 (2018), 131-146.
doi: 10.1016/j.cnsns.2017.06.013. |
[6] |
T. Asada, M. Demetrian and R. Zimka,
On dynamics in a Keynesian model of monetary and fiscal stabilization policy mix with twin debt accumulation, Metroeconomica, 70 (2019), 365-383.
|
[7] |
T. Asada, C. Douskos, V. Kalantonis and P. Markellos, Numerical exploration of Kaldorian interregional macrodynamics: Enhanced stability and predominance of period doubling under flexible exchange rates, Discrete Dyn. Nat. Soc., (2010), Art. ID. 263041, 1–29.
doi: 10.1155/2010/263041. |
[8] |
T. Asada, C. Douskos and P. Markellos,
Numerical exploration of Kaldorian interregional macrodynamics: Stability and the trade threshold for business cycles under fixed exchange rates, Nonlinear Dynamics, Psychology, and Life Sciences, 15 (2011), 105-128.
|
[9] |
T. Asada, T. Inaba and T. Misawa,
A nonlinear macrodynamic model with fixed exchange rates: Its dynamics and noise effects, Discrete Dyn. Nat. Soc., 4 (2000), 319-331.
doi: 10.1155/S1026022600000303. |
[10] |
T. Asada, T. Inaba and T. Misawa,
An interregional dynamic model: The case of fixed exchange rates, Studies in Regional Science, 31 (2001), 29-41.
doi: 10.2457/srs.31.2_29. |
[11] |
T. Asada, V. Kalantonis, M. Markellos and P. Markellos,
Analytical expressions of periodic disequilibrium fluctuations generated by Hopf bifurcations in economic dynamics, Appl. Math. Comput., 218 (2012), 7066-7077.
doi: 10.1016/j.amc.2011.12.063. |
[12] |
T. Asada, T. Misawa and T. Inaba,
Chaotic dynamics in a flexible exchange rate system: A study of noise effects, Discrete Dyn. Nat. Soc., 4 (2000), 309-317.
|
[13] |
R. Barro and X. Sala-i Martin, Economic Growth, 2$^{nd}$ edition, MIT Press, Cambridge, MA, 2004.
![]() |
[14] |
J. Benhabib and T. Miyao,
Some new results on the dynamics of the generalized Tobin model, International Economic Review, 22 (1981), 589-596.
doi: 10.2307/2526160. |
[15] |
Yu. N. Bibikov, Local Theory of Nonlinear Analytic Ordinary Differential Equations, Lecture Notes in Mathematics, 702. Springer-Verlag, Berlin-New York, 1979. |
[16] |
A. Dohtani, T. Misawa, T. Inaba, M. Yokoo and T. Owase,
Chaos, complex transients and noise: Illustration with a Kaldor model, Chaos, Solitons and Fractals, 7 (1996), 2157-2174.
doi: 10.1016/S0960-0779(96)00077-X. |
[17] |
J. M. Fleming,
Domestic financial policies under fixed and floating exchange rates, IMF Stuff Papers, 9 (1962), 369-379.
|
[18] |
J. A. Frenkel and A. Razin, Fiscal Policies and the World Economy, MIT Press, Cambridge, MA, 1987.
doi: 10.1086/261390.![]() ![]() |
[19] |
G. Gandolfo, Economic Dynamics, 4$^{th}$ edition, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-642-03871-6. |
[20] |
R. M. Goodwin, Essays in Economic Dynamics, Macmillan, London, 1982.
doi: 10.1007/978-1-349-05504-3. |
[21] |
K. Hamada, The Political Economy of International Monetary Interdependence, MIT Press, Cambridge, MA, 1985.
![]() |
[22] |
T. Inaba and T. Asada, On dynamics of a three-country Kaldorian model of business cycles with fixed exchange rates, In Games and Dynamics in Economics: Essays in Honor of Akio Matsumoto, ed. F. Szidarovszky and G. I. Bischi
doi: 10.1007/978-981-15-3623-6_6. |
[23] |
N. Kaldor,
A model of the trade cycle, Econ. J., 50 (1940), 78-92.
doi: 10.2307/2225740. |
[24] |
M. Kalecki, Selected Essays on the Dynamics of the Capitalist Economy, Cambridge University Press, Cambridge, UK, 1971.
![]() |
[25] |
J. M. Keynes, The General Theory of Employment, Interest and Money, Macmillan, London, 1936. |
[26] |
P. Krugman, The Self-Organizing Economy, Blackwell, Oxford, UK, 1996. |
[27] |
Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, Third edition, Applied Mathematical Sciences, 112. Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-3978-7. |
[28] |
A. Leijonhufvud,
Effective demand failure, Swedish Journal of Economics, 75 (1973), 27-48.
doi: 10.2307/3439273. |
[29] |
W. M. Liu,
Criterion of Hopf bifurcations without using eigenvalues, J. Math. Anal. Appl., 182 (1994), 250-256.
doi: 10.1006/jmaa.1994.1079. |
[30] |
H.-W. Lorenz,
International trade and the possible occurrence of chaos, Economics Letters, 23 (1987), 135-138.
doi: 10.1016/0165-1765(87)90026-7. |
[31] |
H.-W. Lorenz,
Strange attractors in a multisector business cycle model, Journal of Economic Behavior and Organization, 8 (1987), 397-411.
doi: 10.1016/0167-2681(87)90052-7. |
[32] |
P. Maličky and R. Zimka,
On the existence of business cycles in Asada's two-regional model, Nonlinear Anal. Real World Appl., 11 (2010), 2787-2795.
doi: 10.1016/j.nonrwa.2009.10.003. |
[33] |
P. Maličky and R. Zimka,
On the existence of Tori in Asada's two-regional model, Nonlinear Anal. Real World Appl., 13 (2012), 710-724.
doi: 10.1016/j.nonrwa.2011.08.011. |
[34] |
P. Medve${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}}
\over d} }}$ová,
A dynamic model of a small open economy under flexible exchange rates, Acta Polytechnica Hungarica, 8 (2011), 13-26.
|
[35] |
R. A. Mundell,
Capital mobility and stabilization policy under fixed and flexible exchange rates, Canadian Journal of Economics and Political Science, 29 (1963), 475-485.
doi: 10.2307/139336. |
[36] |
R. A. Mundell, International Economics, Macmillan, New York, 1968. |
[37] |
M. Nakao,
Stability of business cycles and economic openness of monetary union: A Kaldorian two-country model, Evolutionary and Institutional Economics Review, 16 (2019), 65-89.
doi: 10.1007/s40844-019-00124-6. |
[38] |
S. Newhouse, D. Ruelle and F. Takens,
Occurrence of strange axiom A attractors near quasi-periodic flows on $T^m, m\geq 3$, Communications in Mathematical Physics, 64 (1978), 35-40.
doi: 10.1007/BF01940759. |
[39] |
J. Niehans, International Monetary Economics, John Hopkins University Press, Baltimore and London, 1984.
![]() |
[40] |
P. Nijkamp and A. Reggiani, Interaction, Evolution and Chaos in Space, Springer-Verlag, New York, 1992.
doi: 10.1007/978-3-642-77509-3. |
[41] |
T. Puu, Nonlinear Economic Dynamics, $4^{th}$ edition, Springer-Verlag, Berlin, 1997.
doi: 10.1007/978-3-642-60775-2. |
[42] |
D. Romer, Advanced Macroeconomics, 4$^{th}$ edition, McGraw-Hill, New York, 2012. |
[43] |
J. B. Rosser Jr., From Catastrophe to Chaos: A General Theory of Economic Discontinuities, Kluwer Academic Publishers, Boston, 1991.
doi: 10.1007/978-1-4613-3796-6. |
[44] |
N. Sarantis,
Macroeconomic policy and activity in an open economy with oligopoly and collective bargaining, Journal of Economics, 49 (1989), 25-46.
doi: 10.1007/BF01227871. |
[45] |
W. Semmler,
On nonlinear theories of cycles and the persistence of business cycles, Mathematical Social Sciences, 12 (1986), 47-76.
doi: 10.1016/0165-4896(86)90047-8. |
[46] |
R. Sethi,
Endogenous growth cycles in an open economy with fixed exchange rates, Journal of Economic Behavior and Organization, 19 (1992), 327-342.
doi: 10.1016/0167-2681(92)90041-9. |
[47] |
V. Torre,
Existence of limit cycles and control in complete Keynesian system by theory of bifurcations, Econometrica, 45 (1977), 1457-1466.
doi: 10.2307/1912311. |
[48] |
S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics, 2. Springer-Verlag, New York, 1990.
doi: 10.1007/978-1-4757-4067-7. |
show all references
References:
[1] |
T. Asada,
Kaldorian dynamics in an open economy, J. Econ., 62 (1995), 239-269.
doi: 10.1007/BF01238819. |
[2] |
T. Asada,
A two-regional model of business cycles with fixed exchange rates : A Kaldorian approach, Studies in Regional Sciences, 34 (2004), 19-38.
doi: 10.2457/srs.34.2_19. |
[3] |
T. Asada, C. Chiarella, P. Flaschel and R. Franke, Open Economy Macrodynamics: An Integrated Disequilibrium Approach, Springer-Verlag, Berlin, 2003. |
[4] |
T. Asada, C. Chiarella, P. Flaschel and R. Franke, Monetary Macrodynamics, Routledge, London, 2010.
doi: 10.4324/9780203859964. |
[5] |
T. Asada, M. Demetrian and R. Zimka,
On dynamics in a Keynesian model of monetary and fiscal policy with debt effect, Commun. Nonlinear Sci. Numer. Simul., 58 (2018), 131-146.
doi: 10.1016/j.cnsns.2017.06.013. |
[6] |
T. Asada, M. Demetrian and R. Zimka,
On dynamics in a Keynesian model of monetary and fiscal stabilization policy mix with twin debt accumulation, Metroeconomica, 70 (2019), 365-383.
|
[7] |
T. Asada, C. Douskos, V. Kalantonis and P. Markellos, Numerical exploration of Kaldorian interregional macrodynamics: Enhanced stability and predominance of period doubling under flexible exchange rates, Discrete Dyn. Nat. Soc., (2010), Art. ID. 263041, 1–29.
doi: 10.1155/2010/263041. |
[8] |
T. Asada, C. Douskos and P. Markellos,
Numerical exploration of Kaldorian interregional macrodynamics: Stability and the trade threshold for business cycles under fixed exchange rates, Nonlinear Dynamics, Psychology, and Life Sciences, 15 (2011), 105-128.
|
[9] |
T. Asada, T. Inaba and T. Misawa,
A nonlinear macrodynamic model with fixed exchange rates: Its dynamics and noise effects, Discrete Dyn. Nat. Soc., 4 (2000), 319-331.
doi: 10.1155/S1026022600000303. |
[10] |
T. Asada, T. Inaba and T. Misawa,
An interregional dynamic model: The case of fixed exchange rates, Studies in Regional Science, 31 (2001), 29-41.
doi: 10.2457/srs.31.2_29. |
[11] |
T. Asada, V. Kalantonis, M. Markellos and P. Markellos,
Analytical expressions of periodic disequilibrium fluctuations generated by Hopf bifurcations in economic dynamics, Appl. Math. Comput., 218 (2012), 7066-7077.
doi: 10.1016/j.amc.2011.12.063. |
[12] |
T. Asada, T. Misawa and T. Inaba,
Chaotic dynamics in a flexible exchange rate system: A study of noise effects, Discrete Dyn. Nat. Soc., 4 (2000), 309-317.
|
[13] |
R. Barro and X. Sala-i Martin, Economic Growth, 2$^{nd}$ edition, MIT Press, Cambridge, MA, 2004.
![]() |
[14] |
J. Benhabib and T. Miyao,
Some new results on the dynamics of the generalized Tobin model, International Economic Review, 22 (1981), 589-596.
doi: 10.2307/2526160. |
[15] |
Yu. N. Bibikov, Local Theory of Nonlinear Analytic Ordinary Differential Equations, Lecture Notes in Mathematics, 702. Springer-Verlag, Berlin-New York, 1979. |
[16] |
A. Dohtani, T. Misawa, T. Inaba, M. Yokoo and T. Owase,
Chaos, complex transients and noise: Illustration with a Kaldor model, Chaos, Solitons and Fractals, 7 (1996), 2157-2174.
doi: 10.1016/S0960-0779(96)00077-X. |
[17] |
J. M. Fleming,
Domestic financial policies under fixed and floating exchange rates, IMF Stuff Papers, 9 (1962), 369-379.
|
[18] |
J. A. Frenkel and A. Razin, Fiscal Policies and the World Economy, MIT Press, Cambridge, MA, 1987.
doi: 10.1086/261390.![]() ![]() |
[19] |
G. Gandolfo, Economic Dynamics, 4$^{th}$ edition, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-642-03871-6. |
[20] |
R. M. Goodwin, Essays in Economic Dynamics, Macmillan, London, 1982.
doi: 10.1007/978-1-349-05504-3. |
[21] |
K. Hamada, The Political Economy of International Monetary Interdependence, MIT Press, Cambridge, MA, 1985.
![]() |
[22] |
T. Inaba and T. Asada, On dynamics of a three-country Kaldorian model of business cycles with fixed exchange rates, In Games and Dynamics in Economics: Essays in Honor of Akio Matsumoto, ed. F. Szidarovszky and G. I. Bischi
doi: 10.1007/978-981-15-3623-6_6. |
[23] |
N. Kaldor,
A model of the trade cycle, Econ. J., 50 (1940), 78-92.
doi: 10.2307/2225740. |
[24] |
M. Kalecki, Selected Essays on the Dynamics of the Capitalist Economy, Cambridge University Press, Cambridge, UK, 1971.
![]() |
[25] |
J. M. Keynes, The General Theory of Employment, Interest and Money, Macmillan, London, 1936. |
[26] |
P. Krugman, The Self-Organizing Economy, Blackwell, Oxford, UK, 1996. |
[27] |
Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, Third edition, Applied Mathematical Sciences, 112. Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-3978-7. |
[28] |
A. Leijonhufvud,
Effective demand failure, Swedish Journal of Economics, 75 (1973), 27-48.
doi: 10.2307/3439273. |
[29] |
W. M. Liu,
Criterion of Hopf bifurcations without using eigenvalues, J. Math. Anal. Appl., 182 (1994), 250-256.
doi: 10.1006/jmaa.1994.1079. |
[30] |
H.-W. Lorenz,
International trade and the possible occurrence of chaos, Economics Letters, 23 (1987), 135-138.
doi: 10.1016/0165-1765(87)90026-7. |
[31] |
H.-W. Lorenz,
Strange attractors in a multisector business cycle model, Journal of Economic Behavior and Organization, 8 (1987), 397-411.
doi: 10.1016/0167-2681(87)90052-7. |
[32] |
P. Maličky and R. Zimka,
On the existence of business cycles in Asada's two-regional model, Nonlinear Anal. Real World Appl., 11 (2010), 2787-2795.
doi: 10.1016/j.nonrwa.2009.10.003. |
[33] |
P. Maličky and R. Zimka,
On the existence of Tori in Asada's two-regional model, Nonlinear Anal. Real World Appl., 13 (2012), 710-724.
doi: 10.1016/j.nonrwa.2011.08.011. |
[34] |
P. Medve${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}}
\over d} }}$ová,
A dynamic model of a small open economy under flexible exchange rates, Acta Polytechnica Hungarica, 8 (2011), 13-26.
|
[35] |
R. A. Mundell,
Capital mobility and stabilization policy under fixed and flexible exchange rates, Canadian Journal of Economics and Political Science, 29 (1963), 475-485.
doi: 10.2307/139336. |
[36] |
R. A. Mundell, International Economics, Macmillan, New York, 1968. |
[37] |
M. Nakao,
Stability of business cycles and economic openness of monetary union: A Kaldorian two-country model, Evolutionary and Institutional Economics Review, 16 (2019), 65-89.
doi: 10.1007/s40844-019-00124-6. |
[38] |
S. Newhouse, D. Ruelle and F. Takens,
Occurrence of strange axiom A attractors near quasi-periodic flows on $T^m, m\geq 3$, Communications in Mathematical Physics, 64 (1978), 35-40.
doi: 10.1007/BF01940759. |
[39] |
J. Niehans, International Monetary Economics, John Hopkins University Press, Baltimore and London, 1984.
![]() |
[40] |
P. Nijkamp and A. Reggiani, Interaction, Evolution and Chaos in Space, Springer-Verlag, New York, 1992.
doi: 10.1007/978-3-642-77509-3. |
[41] |
T. Puu, Nonlinear Economic Dynamics, $4^{th}$ edition, Springer-Verlag, Berlin, 1997.
doi: 10.1007/978-3-642-60775-2. |
[42] |
D. Romer, Advanced Macroeconomics, 4$^{th}$ edition, McGraw-Hill, New York, 2012. |
[43] |
J. B. Rosser Jr., From Catastrophe to Chaos: A General Theory of Economic Discontinuities, Kluwer Academic Publishers, Boston, 1991.
doi: 10.1007/978-1-4613-3796-6. |
[44] |
N. Sarantis,
Macroeconomic policy and activity in an open economy with oligopoly and collective bargaining, Journal of Economics, 49 (1989), 25-46.
doi: 10.1007/BF01227871. |
[45] |
W. Semmler,
On nonlinear theories of cycles and the persistence of business cycles, Mathematical Social Sciences, 12 (1986), 47-76.
doi: 10.1016/0165-4896(86)90047-8. |
[46] |
R. Sethi,
Endogenous growth cycles in an open economy with fixed exchange rates, Journal of Economic Behavior and Organization, 19 (1992), 327-342.
doi: 10.1016/0167-2681(92)90041-9. |
[47] |
V. Torre,
Existence of limit cycles and control in complete Keynesian system by theory of bifurcations, Econometrica, 45 (1977), 1457-1466.
doi: 10.2307/1912311. |
[48] |
S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics, 2. Springer-Verlag, New York, 1990.
doi: 10.1007/978-1-4757-4067-7. |





[1] |
Qigang Yuan, Yutong Sun, Jingli Ren. How interest rate influences a business cycle model. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3231-3251. doi: 10.3934/dcdss.2020190 |
[2] |
Frederic Mazenc, Gonzalo Robledo, Michael Malisoff. Stability and robustness analysis for a multispecies chemostat model with delays in the growth rates and uncertainties. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1851-1872. doi: 10.3934/dcdsb.2018098 |
[3] |
Qinglong Zhou, Yongchao Zhang. Analytic results for the linear stability of the equilibrium point in Robe's restricted elliptic three-body problem. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1763-1787. doi: 10.3934/dcds.2017074 |
[4] |
Liming Zhang, Rongming Wang, Jiaqin Wei. Open-loop equilibrium mean-variance reinsurance, new business and investment strategies with constraints. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021140 |
[5] |
Gongpin Cheng, Lin Xu. Optimal size of business and dividend strategy in a nonlinear model with refinancing and liquidation value. Mathematical Control and Related Fields, 2017, 7 (1) : 1-19. doi: 10.3934/mcrf.2017001 |
[6] |
Yeping Li, Jie Liao. Stability and $ L^{p}$ convergence rates of planar diffusion waves for three-dimensional bipolar Euler-Poisson systems. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1281-1302. doi: 10.3934/cpaa.2019062 |
[7] |
Davit Karagulyan. Hausdorff dimension of a class of three-interval exchange maps. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1257-1281. doi: 10.3934/dcds.2020077 |
[8] |
Jon Chaika, Alex Eskin. Möbius disjointness for interval exchange transformations on three intervals. Journal of Modern Dynamics, 2019, 14: 55-86. doi: 10.3934/jmd.2019003 |
[9] |
Chunqing Wu, Patricia J.Y. Wong. Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3255-3266. doi: 10.3934/dcdsb.2015.20.3255 |
[10] |
Yoshiaki Muroya, Toshikazu Kuniya, Yoichi Enatsu. Global stability of a delayed multi-group SIRS epidemic model with nonlinear incidence rates and relapse of infection. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3057-3091. doi: 10.3934/dcdsb.2015.20.3057 |
[11] |
Elvio Accinelli, Edgar Sánchez Carrera, Laura Policardo, Osvaldo Salas. Free mobility of capital and Labor force in a two-country model: The dynamic game for growth. Journal of Dynamics and Games, 2019, 6 (3) : 179-194. doi: 10.3934/jdg.2019013 |
[12] |
Shimin Li, Jaume Llibre. On the limit cycles of planar discontinuous piecewise linear differential systems with a unique equilibrium. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5885-5901. doi: 10.3934/dcdsb.2019111 |
[13] |
Erick Limas. An application of minimal spanning trees and hierarchical trees to the study of Latin American exchange rates. Journal of Dynamics and Games, 2019, 6 (2) : 131-148. doi: 10.3934/jdg.2019010 |
[14] |
Maria Carvalho, Alexander Lohse, Alexandre A. P. Rodrigues. Moduli of stability for heteroclinic cycles of periodic solutions. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6541-6564. doi: 10.3934/dcds.2019284 |
[15] |
José Luis Bravo, Manuel Fernández, Armengol Gasull. Stability of singular limit cycles for Abel equations. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1873-1890. doi: 10.3934/dcds.2015.35.1873 |
[16] |
Leonid Shaikhet. Stability of a positive equilibrium state for a stochastically perturbed mathematical model of glassy-winged sharpshooter population. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1167-1174. doi: 10.3934/mbe.2014.11.1167 |
[17] |
Weiyi Zhang, Ling Zhou. Global asymptotic stability of constant equilibrium in a nonlocal diffusion competition model with free boundaries. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022062 |
[18] |
Mats Gyllenberg, Ping Yan. On the number of limit cycles for three dimensional Lotka-Volterra systems. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 347-352. doi: 10.3934/dcdsb.2009.11.347 |
[19] |
Xiaolei Zhang, Yanqin Xiong, Yi Zhang. The number of limit cycles by perturbing a piecewise linear system with three zones. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1833-1855. doi: 10.3934/cpaa.2022049 |
[20] |
Feng Zhang, Jinting Wang, Bin Liu. On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations. Journal of Industrial and Management Optimization, 2012, 8 (4) : 861-875. doi: 10.3934/jimo.2012.8.861 |
2021 Impact Factor: 1.497
Tools
Article outline
Figures and Tables
[Back to Top]