• Previous Article
    A Crank-Nicolson type minimization scheme for a hyperbolic free boundary problem
  • DCDS-B Home
  • This Issue
  • Next Article
    Existence of finite time blow-up solutions in a normal form of the subcritical Hopf bifurcation with time-delayed feedback for small initial functions
May  2022, 27(5): 2635-2660. doi: 10.3934/dcdsb.2021152

Wave phenomena in a compartmental epidemic model with nonlocal dispersal and relapse

1. 

School of Mathematics and Physics, China University of Geosciences, Wuhan, 430074, China

2. 

Center for Mathematical Sciences, China University of Geosciences, Wuhan, 430074, China

3. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China

4. 

School of Mathematics and Big Data, Foshan University, Foshan 528000, China

* Corresponding author: Chufen Wu

Received  February 2021 Revised  April 2021 Published  May 2022 Early access  May 2021

This paper is concerned with the wave phenomena in a compartmental epidemic model with nonlocal dispersal and relapse. We first show the well-posedness of solutions for such a problem. Then, in terms of the basic reproduction number and the wave speed, we establish a threshold result which reveals the existence and non-existence of the strong traveling waves accounting for phase transitions between the disease-free equilibrium and the endemic steady state. Further, we clarify and characterize the minimal wave speed of traveling waves. Finally, numerical simulations and discussions are also given to illustrate the analytical results. Our result indicates that the relapse can encourage the spread of the disease.

Citation: Jia-Bing Wang, Shao-Xia Qiao, Chufen Wu. Wave phenomena in a compartmental epidemic model with nonlocal dispersal and relapse. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2635-2660. doi: 10.3934/dcdsb.2021152
References:
[1]

Z. Bai and S. Zhang, Traveling waves of a diffusive SIR epidemic model with a class of nonlinear incidence rates and distributed delay, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 1370-1381.  doi: 10.1016/j.cnsns.2014.07.005.

[2]

S. Blower, Modelling the genital herpes epidemic, Herpes 11, 3 (2004), 138A–146A.

[3]

S. M. BlowerT. C. Porco and G. Darby, Predicting and preventing the emergence of antiviral drug resistance in HSV-2, Nat. Med., 4 (1998), 673-678.  doi: 10.1038/nm0698-673.

[4]

X. Chen and J. S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics, Math. Ann., 326 (2003), 123-146.  doi: 10.1007/s00208-003-0414-0.

[5]

J. Coville and L. Dupaigne, On a non-local eqution arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A., 137 (2007), 727-755.  doi: 10.1017/S0308210504000721.

[6]

H. Cox, Tuberculosis recurrence and mortality after successful treatment: Impact of drug resistance, PLoS Med., 3 (2006), 1836-1843.  doi: 10.1371/journal.pmed.0030384.

[7]

O. Diekman, Thresholds and travelling waves for the geographical spread of infection, J. Math. Biol., 69 (1978), 109–130. doi: 10.1007/BF02450783.

[8]

A. Ducrot and P. Magal, Traveling wave solutions for an infection-age structured epidemic model with external supplies, Nonlinearity, 24 (2011), 2891-2911.  doi: 10.1088/0951-7715/24/10/012.

[9]

A. DucrotP. Magal and S. Ruan, Travelling wave solutions in multigroup age-structured epidemic models, Arch. Rational Mech. Anal., 195 (2010), 311-331.  doi: 10.1007/s00205-008-0203-8.

[10]

S. C. Fu, Traveling waves for a diffusive SIR model with delay, J. Math. Anal. Appl., 435 (2016), 20-37.  doi: 10.1016/j.jmaa.2015.09.069.

[11]

P. GuoX. S. Yang and Z. C. Yang, Dynamical behaviors of an SIRI epidemic model with nonlinear incidence and latent period, Adv. Difference Equ., 2014 (2014), 164-181.  doi: 10.1186/1687-1847-2014-164.

[12]

P. Georgescu and H. Zhang, A Lyapunov functional for a SIRI model with nonlinear incidence of infection and relapse, Appl. Math. Comput., 219 (2013), 8496-8507.  doi: 10.1016/j.amc.2013.02.044.

[13]

S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread, Fields Inst. Commun., 48 (2006), 137-200.  doi: 10.1007/s00285-006-0050-x.

[14]

G. HuangY. TakeuchiW. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), 1192-1207.  doi: 10.1007/s11538-009-9487-6.

[15]

W. Huang and C. Wu, Non-monotone waves of a stage-structured SLIRM epidemic model with latent period, Proc. Roy. Soc. Edinburgh Sect. A. doi: 10.1017/prm.2020.65.

[16]

V. HutsonS. MartinezK. Mischailow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.

[17]

C. Y. KaoY. Lou and W. Shen, Random diseprsal vs nonlocal dispersal, Discrete Contin. Dyn. Syst., 26 (2010), 551-596.  doi: 10.3934/dcds.2010.26.551.

[18]

M. Kermack and A. Mckendrick, Contributions to the mathematical theory of epidemics, Proc. Roy. Soc. A, 115 (1927), 700-721. 

[19]

T. Kuniya and J. Wang, Lyapunov functions and global stability for a spatially diffusive SIR epidemic model, Appl. Anal., 96 (2017), 1935-1960.  doi: 10.1080/00036811.2016.1199796.

[20]

W. T. LiJ. B. Wang and X.-Q. Zhao, Spatial dynamics of a nonlocal dispersal population model in a shifting environment, J. Nonlinear Sci., 28 (2018), 1189-1219.  doi: 10.1007/s00332-018-9445-2.

[21]

W. T. Li and F. Y. Yang, Traveling waves for a nonlocal dispersal SIR model with standard incidence, J. Integral Equations Appl., 26 (2014), 243-273.  doi: 10.1216/JIE-2014-26-2-243.

[22]

Y. LiW. T. Li and F. Y. Yang, Traveling waves for nonlocal dispersal SIR model with delay and external supplies, Appl. Math. Comput., 247 (2014), 723-740.  doi: 10.1016/j.amc.2014.09.072.

[23]

J. MartinsA. Pinto and N. Stollenwerkc, A scaling analysis in the SIRI epidemiological model, J. Biol. Dyn., 3 (2009), 479-496.  doi: 10.1080/17513750802601058.

[24]

H. N. Moreira and Y. Wang, Global stability in an $S\rightarrow I\rightarrow R\rightarrow I$ model, SIAM Rev., 39 (1997), 496-502.  doi: 10.1137/S0036144595295879.

[25]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983. doi: 10.1007/978-1-4612-5561-1.

[26]

D. Tudor, A deterministic model for herpes infections in human and animal populations, SIAM Rev., 32 (1990), 136-139.  doi: 10.1137/1032003.

[27]

P. van den Driessche and X. Zou, Modeling relapse in infectious diseases, Math. Biosci., 207 (2007), 89-103.  doi: 10.1016/j.mbs.2006.09.017.

[28]

C. Vargas-De-León, On the global stability of infectious diseases models with relapse, Abstr. Appl., 9 (2013), 50-61. 

[29]

J. B. WangW. T. Li and F. Y. Yang, Traveling waves in a nonlocal dispersal SIR model with nonlocal delayed transmission, Commun. Nonlinear Sci. Numer. Simulat., 27 (2015), 136-152.  doi: 10.1016/j.cnsns.2015.03.005.

[30]

J. B. Wang and C. Wu, Forced waves and gap formations for a Lotka-Volterra competition model with nonlocal dispersal and shifting habitats, Nonlinear Anal. Real World Appl., 58 (2021), 103208. doi: 10.1016/j.nonrwa.2020.103208.

[31]

X. WangH. Wang and J. Wu, Travelling waves of diffusive predator-prey systems: Disease outbreak propagation, Discrete Contin. Dyn. Syst., 32 (2012), 3303-3324.  doi: 10.3934/dcds.2012.32.3303.

[32]

Z. C. Wang and J. Wu, Travelling waves of a diffusive Kermack-Mckendrick epidemic model with non-local delayed transmission, Proc. R. Soc. Lond. Ser. A, 466 (2010), 237-261.  doi: 10.1098/rspa.2009.0377.

[33] G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, CRC Press, 1985. 
[34]

P. Weng and X. Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemic model, J. Differential Equations, 229 (2006), 270-296.  doi: 10.1016/j.jde.2006.01.020.

[35] D. V. Widder, Laplace Transform, Princeton University Press, Princeton, NJ, 1941. 
[36]

P. WildyH. J. Field and A. A. Nash, Classical herpes latency revisited, Virus Persistence Symposium, 33 (1982), 133-167. 

[37]

C. WuY. YangQ. ZhaoY. Tian and Z. Xu, Epidemic waves of a spatial SIR model in combination with random dispersal and non-local dispersal, Appl. Math. Comput., 313 (2017), 122-143.  doi: 10.1016/j.amc.2017.05.068.

[38]

C. WuY. Wang and X. Zou, Spatial-temporal dynamics of a Lotka-Volterra competition model with nonlocal dispersal under shifting environment, J. Differential Equations, 267 (2019), 4890-4921.  doi: 10.1016/j.jde.2019.05.019.

[39]

C. C. Wu, Existence of traveling waves with the critical speed for a discrete diffusive epidemic model, J. Differential Equations, 262 (2017), 272-282.  doi: 10.1016/j.jde.2016.09.022.

[40]

F. Y. YangY. LiW. T. Li and Z. C. Wang, Traveling waves in a nonlocal dispersal Kermack-Mckendrick epidemic model, Discrete Contin. Dyn. Syst. Ser. B., 18 (2013), 1969-1993.  doi: 10.3934/dcdsb.2013.18.1969.

[41]

F. Y. Yang and W. T. Li, Traveling waves in a nonlocal dispersal SIR model with critical wave speed, J. Math. Anal. Appl., 458 (2018), 1131-1146.  doi: 10.1016/j.jmaa.2017.10.016.

[42]

G. B. ZhangW. T. Li and G. Lin, Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Model., 49 (2009), 1021-1029.  doi: 10.1016/j.mcm.2008.09.007.

[43]

C. C. ZhuW. T. Li and F. Y. Yang, Traveling waves in a nonlocal dispersal SIRH model with relapse, Comput. Math. Appl., 73 (2017), 1707-1723.  doi: 10.1016/j.camwa.2017.02.014.

show all references

References:
[1]

Z. Bai and S. Zhang, Traveling waves of a diffusive SIR epidemic model with a class of nonlinear incidence rates and distributed delay, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 1370-1381.  doi: 10.1016/j.cnsns.2014.07.005.

[2]

S. Blower, Modelling the genital herpes epidemic, Herpes 11, 3 (2004), 138A–146A.

[3]

S. M. BlowerT. C. Porco and G. Darby, Predicting and preventing the emergence of antiviral drug resistance in HSV-2, Nat. Med., 4 (1998), 673-678.  doi: 10.1038/nm0698-673.

[4]

X. Chen and J. S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics, Math. Ann., 326 (2003), 123-146.  doi: 10.1007/s00208-003-0414-0.

[5]

J. Coville and L. Dupaigne, On a non-local eqution arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A., 137 (2007), 727-755.  doi: 10.1017/S0308210504000721.

[6]

H. Cox, Tuberculosis recurrence and mortality after successful treatment: Impact of drug resistance, PLoS Med., 3 (2006), 1836-1843.  doi: 10.1371/journal.pmed.0030384.

[7]

O. Diekman, Thresholds and travelling waves for the geographical spread of infection, J. Math. Biol., 69 (1978), 109–130. doi: 10.1007/BF02450783.

[8]

A. Ducrot and P. Magal, Traveling wave solutions for an infection-age structured epidemic model with external supplies, Nonlinearity, 24 (2011), 2891-2911.  doi: 10.1088/0951-7715/24/10/012.

[9]

A. DucrotP. Magal and S. Ruan, Travelling wave solutions in multigroup age-structured epidemic models, Arch. Rational Mech. Anal., 195 (2010), 311-331.  doi: 10.1007/s00205-008-0203-8.

[10]

S. C. Fu, Traveling waves for a diffusive SIR model with delay, J. Math. Anal. Appl., 435 (2016), 20-37.  doi: 10.1016/j.jmaa.2015.09.069.

[11]

P. GuoX. S. Yang and Z. C. Yang, Dynamical behaviors of an SIRI epidemic model with nonlinear incidence and latent period, Adv. Difference Equ., 2014 (2014), 164-181.  doi: 10.1186/1687-1847-2014-164.

[12]

P. Georgescu and H. Zhang, A Lyapunov functional for a SIRI model with nonlinear incidence of infection and relapse, Appl. Math. Comput., 219 (2013), 8496-8507.  doi: 10.1016/j.amc.2013.02.044.

[13]

S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread, Fields Inst. Commun., 48 (2006), 137-200.  doi: 10.1007/s00285-006-0050-x.

[14]

G. HuangY. TakeuchiW. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), 1192-1207.  doi: 10.1007/s11538-009-9487-6.

[15]

W. Huang and C. Wu, Non-monotone waves of a stage-structured SLIRM epidemic model with latent period, Proc. Roy. Soc. Edinburgh Sect. A. doi: 10.1017/prm.2020.65.

[16]

V. HutsonS. MartinezK. Mischailow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.

[17]

C. Y. KaoY. Lou and W. Shen, Random diseprsal vs nonlocal dispersal, Discrete Contin. Dyn. Syst., 26 (2010), 551-596.  doi: 10.3934/dcds.2010.26.551.

[18]

M. Kermack and A. Mckendrick, Contributions to the mathematical theory of epidemics, Proc. Roy. Soc. A, 115 (1927), 700-721. 

[19]

T. Kuniya and J. Wang, Lyapunov functions and global stability for a spatially diffusive SIR epidemic model, Appl. Anal., 96 (2017), 1935-1960.  doi: 10.1080/00036811.2016.1199796.

[20]

W. T. LiJ. B. Wang and X.-Q. Zhao, Spatial dynamics of a nonlocal dispersal population model in a shifting environment, J. Nonlinear Sci., 28 (2018), 1189-1219.  doi: 10.1007/s00332-018-9445-2.

[21]

W. T. Li and F. Y. Yang, Traveling waves for a nonlocal dispersal SIR model with standard incidence, J. Integral Equations Appl., 26 (2014), 243-273.  doi: 10.1216/JIE-2014-26-2-243.

[22]

Y. LiW. T. Li and F. Y. Yang, Traveling waves for nonlocal dispersal SIR model with delay and external supplies, Appl. Math. Comput., 247 (2014), 723-740.  doi: 10.1016/j.amc.2014.09.072.

[23]

J. MartinsA. Pinto and N. Stollenwerkc, A scaling analysis in the SIRI epidemiological model, J. Biol. Dyn., 3 (2009), 479-496.  doi: 10.1080/17513750802601058.

[24]

H. N. Moreira and Y. Wang, Global stability in an $S\rightarrow I\rightarrow R\rightarrow I$ model, SIAM Rev., 39 (1997), 496-502.  doi: 10.1137/S0036144595295879.

[25]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983. doi: 10.1007/978-1-4612-5561-1.

[26]

D. Tudor, A deterministic model for herpes infections in human and animal populations, SIAM Rev., 32 (1990), 136-139.  doi: 10.1137/1032003.

[27]

P. van den Driessche and X. Zou, Modeling relapse in infectious diseases, Math. Biosci., 207 (2007), 89-103.  doi: 10.1016/j.mbs.2006.09.017.

[28]

C. Vargas-De-León, On the global stability of infectious diseases models with relapse, Abstr. Appl., 9 (2013), 50-61. 

[29]

J. B. WangW. T. Li and F. Y. Yang, Traveling waves in a nonlocal dispersal SIR model with nonlocal delayed transmission, Commun. Nonlinear Sci. Numer. Simulat., 27 (2015), 136-152.  doi: 10.1016/j.cnsns.2015.03.005.

[30]

J. B. Wang and C. Wu, Forced waves and gap formations for a Lotka-Volterra competition model with nonlocal dispersal and shifting habitats, Nonlinear Anal. Real World Appl., 58 (2021), 103208. doi: 10.1016/j.nonrwa.2020.103208.

[31]

X. WangH. Wang and J. Wu, Travelling waves of diffusive predator-prey systems: Disease outbreak propagation, Discrete Contin. Dyn. Syst., 32 (2012), 3303-3324.  doi: 10.3934/dcds.2012.32.3303.

[32]

Z. C. Wang and J. Wu, Travelling waves of a diffusive Kermack-Mckendrick epidemic model with non-local delayed transmission, Proc. R. Soc. Lond. Ser. A, 466 (2010), 237-261.  doi: 10.1098/rspa.2009.0377.

[33] G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, CRC Press, 1985. 
[34]

P. Weng and X. Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemic model, J. Differential Equations, 229 (2006), 270-296.  doi: 10.1016/j.jde.2006.01.020.

[35] D. V. Widder, Laplace Transform, Princeton University Press, Princeton, NJ, 1941. 
[36]

P. WildyH. J. Field and A. A. Nash, Classical herpes latency revisited, Virus Persistence Symposium, 33 (1982), 133-167. 

[37]

C. WuY. YangQ. ZhaoY. Tian and Z. Xu, Epidemic waves of a spatial SIR model in combination with random dispersal and non-local dispersal, Appl. Math. Comput., 313 (2017), 122-143.  doi: 10.1016/j.amc.2017.05.068.

[38]

C. WuY. Wang and X. Zou, Spatial-temporal dynamics of a Lotka-Volterra competition model with nonlocal dispersal under shifting environment, J. Differential Equations, 267 (2019), 4890-4921.  doi: 10.1016/j.jde.2019.05.019.

[39]

C. C. Wu, Existence of traveling waves with the critical speed for a discrete diffusive epidemic model, J. Differential Equations, 262 (2017), 272-282.  doi: 10.1016/j.jde.2016.09.022.

[40]

F. Y. YangY. LiW. T. Li and Z. C. Wang, Traveling waves in a nonlocal dispersal Kermack-Mckendrick epidemic model, Discrete Contin. Dyn. Syst. Ser. B., 18 (2013), 1969-1993.  doi: 10.3934/dcdsb.2013.18.1969.

[41]

F. Y. Yang and W. T. Li, Traveling waves in a nonlocal dispersal SIR model with critical wave speed, J. Math. Anal. Appl., 458 (2018), 1131-1146.  doi: 10.1016/j.jmaa.2017.10.016.

[42]

G. B. ZhangW. T. Li and G. Lin, Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Model., 49 (2009), 1021-1029.  doi: 10.1016/j.mcm.2008.09.007.

[43]

C. C. ZhuW. T. Li and F. Y. Yang, Traveling waves in a nonlocal dispersal SIRH model with relapse, Comput. Math. Appl., 73 (2017), 1707-1723.  doi: 10.1016/j.camwa.2017.02.014.

Figure 1.  The profile of $ (S,I,R) $ connecting $ (\frac{7}{3},0,0) $ and $ (\frac{11}{6},\frac{3}{22},\frac{1}{11}) $ for $ c>c^* $
Figure 2.  The profile of $ S $ connecting $ \frac{7}{3} $ and $ \frac{11}{6} $ for $ c>c^* $ at time steps $ t = 5,12,20 $
Figure 3.  The profile of $ I $ connecting $ 0 $ and $ \frac{3}{22} $ for $ c>c^* $ at time steps $ t = 5,12,20 $
Figure 4.  The profile of $ R $ connecting $ 0 $ and $ \frac{1}{11} $ for $ c>c^* $ at time steps $ t = 5,12,20 $
Figure 5.  The profile of $ (S,I,R) $ connecting $ (\frac{7}{3},0,0) $ and $ (\frac{11}{6},\frac{3}{22},\frac{1}{11}) $ for $ c = c^* $
Figure 6.  The profile of $ S $ connecting $ \frac{7}{3} $ and $ \frac{11}{6} $ for $ c = c^* $ at time steps $ t = 5,12,20 $
Figure 7.  The profile of $ I $ connecting $ 0 $ and $ \frac{3}{22} $ for $ c = c^* $ at time steps $ t = 5,12,20 $
Figure 8.  The profile of $ R $ connecting $ 0 $ and $ \frac{1}{11} $ for $ c = c^* $ at time steps $ t = 5,12,20 $
Figure 9.  The profile of $ (S,I,R) $ connecting $ (5,0,0) $ and $ (\frac{24}{5},\frac{1}{24},\frac{5}{48}) $ for $ c<c^* $
Figure 10.  The profile of $ S $ connecting $ 5 $ and $ \frac{24}{5} $ for $ c<c^* $ at time steps $ t = 5,12,20 $
Figure 11.  The profile of $ I $ connecting $ 0 $ and $ \frac{1}{24} $ for $ c<c^* $ at time steps $ t = 5,12,20 $
Figure 12.  The profile of $ R $ connecting $ 0 $ and $ \frac{5}{48} $ for $ c<c^* $ at time steps $ t = 5,12,20 $
Figure 13.  The minimal wave speed $ c^* $ with respect to the relapse rate $ \delta $
[1]

Fei-Ying Yang, Wan-Tong Li. Dynamics of a nonlocal dispersal SIS epidemic model. Communications on Pure and Applied Analysis, 2017, 16 (3) : 781-798. doi: 10.3934/cpaa.2017037

[2]

Fei-Ying Yang, Yan Li, Wan-Tong Li, Zhi-Cheng Wang. Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1969-1993. doi: 10.3934/dcdsb.2013.18.1969

[3]

Jingdong Wei, Jiangbo Zhou, Wenxia Chen, Zaili Zhen, Lixin Tian. Traveling waves in a nonlocal dispersal epidemic model with spatio-temporal delay. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2853-2886. doi: 10.3934/cpaa.2020125

[4]

Tomás Caraballo, Mohamed El Fatini, Roger Pettersson, Regragui Taki. A stochastic SIRI epidemic model with relapse and media coverage. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3483-3501. doi: 10.3934/dcdsb.2018250

[5]

Dandan Sun, Yingke Li, Zhidong Teng, Tailei Zhang. Stability and Hopf bifurcation in an age-structured SIR epidemic model with relapse. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022141

[6]

Elisabeth Logak, Isabelle Passat. An epidemic model with nonlocal diffusion on networks. Networks and Heterogeneous Media, 2016, 11 (4) : 693-719. doi: 10.3934/nhm.2016014

[7]

Yoshiaki Muroya, Toshikazu Kuniya, Yoichi Enatsu. Global stability of a delayed multi-group SIRS epidemic model with nonlinear incidence rates and relapse of infection. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3057-3091. doi: 10.3934/dcdsb.2015.20.3057

[8]

Wan-Tong Li, Wen-Bing Xu, Li Zhang. Traveling waves and entire solutions for an epidemic model with asymmetric dispersal. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2483-2512. doi: 10.3934/dcds.2017107

[9]

Jinling Zhou, Yu Yang, Cheng-Hsiung Hsu. Traveling waves for a nonlocal dispersal vaccination model with general incidence. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1469-1495. doi: 10.3934/dcdsb.2019236

[10]

Georg Hetzer, Tung Nguyen, Wenxian Shen. Coexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1699-1722. doi: 10.3934/cpaa.2012.11.1699

[11]

Yang Yang, Yun-Rui Yang, Xin-Jun Jiao. Traveling waves for a nonlocal dispersal SIR model equipped delay and generalized incidence. Electronic Research Archive, 2020, 28 (1) : 1-13. doi: 10.3934/era.2020001

[12]

Xiaoli Wang, Guohong Zhang. Bifurcation analysis of a general activator-inhibitor model with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4459-4477. doi: 10.3934/dcdsb.2020295

[13]

Yu-Xia Hao, Wan-Tong Li, Fei-Ying Yang. Traveling waves in a nonlocal dispersal predator-prey model. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3113-3139. doi: 10.3934/dcdss.2020340

[14]

Jia-Feng Cao, Wan-Tong Li, Fei-Ying Yang. Dynamics of a nonlocal SIS epidemic model with free boundary. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 247-266. doi: 10.3934/dcdsb.2017013

[15]

Zhiting Xu, Yiyi Zhang. Traveling wave phenomena of a diffusive and vector-bias malaria model. Communications on Pure and Applied Analysis, 2015, 14 (3) : 923-940. doi: 10.3934/cpaa.2015.14.923

[16]

Meng Zhao, Wantong Li, Yihong Du. The effect of nonlocal reaction in an epidemic model with nonlocal diffusion and free boundaries. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4599-4620. doi: 10.3934/cpaa.2020208

[17]

Wei Ding, Wenzhang Huang, Siroj Kansakar. Traveling wave solutions for a diffusive sis epidemic model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1291-1304. doi: 10.3934/dcdsb.2013.18.1291

[18]

Li Ma, Youquan Luo. Dynamics of positive steady-state solutions of a nonlocal dispersal logistic model with nonlocal terms. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2555-2582. doi: 10.3934/dcdsb.2020022

[19]

Kun Li, Jianhua Huang, Xiong Li. Asymptotic behavior and uniqueness of traveling wave fronts in a delayed nonlocal dispersal competitive system. Communications on Pure and Applied Analysis, 2017, 16 (1) : 131-150. doi: 10.3934/cpaa.2017006

[20]

Vando Narciso. On a Kirchhoff wave model with nonlocal nonlinear damping. Evolution Equations and Control Theory, 2020, 9 (2) : 487-508. doi: 10.3934/eect.2020021

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (440)
  • HTML views (475)
  • Cited by (0)

Other articles
by authors

[Back to Top]