We consider the fourth-order Schrödinger equation
$ i\partial_tu+\Delta^2 u+\mu\Delta u+\lambda|u|^\alpha u = 0, $
where $ \alpha>0, \mu = \pm1 $ or $ 0 $ and $ \lambda\in\mathbb{C} $. Firstly, we prove local well-posedness in $ H^4\left( {\mathbb R}^N\right) $ in both $ H^4 $ subcritical and critical case: $ \alpha>0 $, $ (N-8)\alpha\leq8 $. Then, for any given compact set $ K\subset\mathbb{R}^N $, we construct $ H^4( {\mathbb R}^N) $ solutions that are defined on $ (-T, 0) $ for some $ T>0 $, and blow up exactly on $ K $ at $ t = 0 $.
Citation: |
[1] |
S. Alinhac, Blowup for Nonlinear Hyperbolic Equations, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., 17. Boston, MA, 1995.
doi: 10.1007/978-1-4612-2578-2.![]() ![]() ![]() ![]() |
[2] |
G. Baruch, G. Fibich and E. Mandelbaum, Singular solutions of the biharmonic nonlinear Schrödinger equation, SIAM J. Appl. Math., 70 (2010), 3319-3341.
doi: 10.1137/100784199.![]() ![]() ![]() |
[3] |
G. Baruch, G. Fibich and N. Gavish, Singular standing ring solutions of nonlinear partial differential equations, Physica D, 239 (2010), 1968-1983.
doi: 10.1016/j.physd.2010.07.009.![]() ![]() ![]() |
[4] |
G. Baruch and G. Fibic, Singular solutions of the $L^2$-supercritical biharmonic nonlinear Schrödinger equation, Physica D, 24 (2011), 1843-1859.
doi: 10.1088/0951-7715/24/6/009.![]() ![]() ![]() |
[5] |
M. Ben-Artzi, H. Koch and J. C. Saut, Disperion estimates for fourth order Schrödinger equations, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 87-92.
doi: 10.1016/S0764-4442(00)00120-8.![]() ![]() ![]() |
[6] |
T. Boulenger and E. Lenzmann, Blowup for Biharmonic NLS, Ann. Sci. Ecole Norm. Sup., 50 (2017), 503-544.
doi: 10.24033/asens.2326.![]() ![]() ![]() |
[7] |
T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, American Mathematical Society, New York; Providence, RI, 2003.
doi: 10.1090/cln/010.![]() ![]() ![]() ![]() |
[8] |
T. Cazenave, S. Correia, F. Dickstein and F. B. Weissler, A Fujita-type blowup result and low energy scattering for a nonlinear Schrödinger equation, São Paulo J. Math. Sci., 9 (2015), 146-161.
doi: 10.1007/s40863-015-0020-6.![]() ![]() ![]() |
[9] |
T. Cazenave, D. Y. Fang and Z. Han, Local well-posedness for the $H^2$-critical nonlinear Schrödinger equation, Trans. Amer. Math. Soc., 368 (2016), 7911-7934.
doi: 10.1090/tran6683.![]() ![]() ![]() |
[10] |
T. Cazenave, Z. Han and Y. Martel, Blowup on an arbitrary compact set for a Schrödinger equation with nonlinear source term, J. Dyn. Diff. Equat., 33 (2021), 941-960.
doi: 10.1007/s10884-020-09841-8.![]() ![]() |
[11] |
T. Cazenave, Y. Martel and L. F. Zhao, Solutions with prescribed local blow-up surface for the nonlinear wave equation, Adv. Nonlinear Stud., 19 (2019), 639-675.
doi: 10.1515/ans-2019-2059.![]() ![]() ![]() |
[12] |
T. Cazenave, Y. Martel and L. F. Zhao, Finite-time blowup for a Schrödinger equation with nonlinear source term, Discrete Contin. Dyn. Syst., 39 (2019), 1171-1183.
doi: 10.3934/dcds.2019050.![]() ![]() ![]() |
[13] |
T. Cazenave, Y. Martel and L. F. Zhao, Solutions blowing up on any given compact set for the energy subcritical wave equation, J. Differential Equations, 268 (2020), 680-706.
doi: 10.1016/j.jde.2019.08.030.![]() ![]() ![]() |
[14] |
Y. Cho, T. Ozawa and C. Wang, Finite time blowup for the fourth-order NLS, Bull. Korean Math. Soc., 53 (2016), 615-640.
doi: 10.4134/BKMS.2016.53.2.615.![]() ![]() ![]() |
[15] |
C. Collot, T. E. Ghouland and N. Masmoudi, Singularity formation for Burgers equation with transverse viscosity, 2018, arXiv: 1803.07826.
![]() |
[16] |
G. M. Constantine and T. H. Savits, A multivariate Faa di Bruno formula with applications, Trans. Amer. Math. Soc., 348 (1996), 503-520.
doi: 10.1090/S0002-9947-96-01501-2.![]() ![]() ![]() |
[17] |
M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys., 65 (1993), 851-1112.
![]() |
[18] |
G. Fibich, B. Ilan and G. Papanicolaou, Self-focusing with forth-order dispersion, SIAM J. Appl. Math., 62 (2002), 1437-1462.
doi: 10.1137/S0036139901387241.![]() ![]() ![]() |
[19] |
S. B. Cui and C. H. Guo, Well-posedness of higher-order nonlinear Schrödinger equations in Sobolev spaces $H^s({\mathbb R}^N)$ and applications, Nonlinear Anal., 67 (2007), 687-707.
doi: 10.1016/j.na.2006.06.020.![]() ![]() ![]() |
[20] |
V. D. Dinh, On blowup solutions to the focusing intercritical nonlinear fourth-order Schrödinger equation, J. Dynam. Differential Equations, 31 (2019), 1793-1823.
doi: 10.1007/s10884-018-9690-y.![]() ![]() ![]() |
[21] |
V. I. Karpman, Lyapunov approach to the soliton stability in highly dispersive systems I. Fourth order nonlinear Schrödinger equations, Phys. Lett. A, 215 (1996), 254-256.
doi: 10.1016/0375-9601(96)00231-9.![]() ![]() ![]() |
[22] |
V. I. Karpman and A. G. Shagalov, Influence of high-order dispersion on self-focusing. II. Numerical investigation, Phys. Lett. A, 160 (1991), 538-540.
![]() |
[23] |
T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 46 (1987), 113-129.
![]() ![]() |
[24] |
T. Kato, Nonlinear Schrödinger equations, Schrödinger operators (Sønderborg, 1988), Lecture Notes in Phys, 345 (1989), 218-263.
doi: 10.1007/3-540-51783-9_22.![]() ![]() ![]() |
[25] |
S. Kawakami and S. Machihara, Blowup solutions for the nonlinear Schrödinger equation with complex coefficient, Differential Integral Equations, 33 (2020), 445-464.
![]() ![]() |
[26] |
M. Keel and T. Tao, Endpoint Strichartz inequalities, Amer. J. Math., 120 (1998), 955-980.
![]() ![]() |
[27] |
X. Liu and T. Zhang, $H^2$ blowup result for a Schrödinger equation with nonlinear source term, Electron. Res. Arch., 28 (2020), 777-794.
doi: 10.3934/era.2020039.![]() ![]() ![]() |
[28] |
F. Merle, Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys., 129 (1990), 223-240.
![]() ![]() |
[29] |
Y. Martel, Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math., 127 (2005), 1103-1140.
![]() ![]() |
[30] |
F. Merle and H. Zaag, On the stability of the notion of non-characteristic point and blow-up profile for semilinear wave equations, Comm. Math. Phys., 333 (2015), 1529-1562.
doi: 10.1007/s00220-014-2132-8.![]() ![]() ![]() |
[31] |
F. Merle and H. Zaag, O.D.E. type behavior of blow-up solutions of nonlinear heat equations, Discrete Contin. Dyn. Syst., 8 (2002), 435-450.
doi: 10.3934/dcds.2002.8.435.![]() ![]() ![]() |
[32] |
C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the focusing energy-critical nonlinear Schrödinger equations of fourth order in the radial case, J. Differential Equations, 246 (2009), 3715-3749.
doi: 10.1016/j.jde.2008.11.011.![]() ![]() ![]() |
[33] |
C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the focusing energy critical nonlinear Schrödinger equations of fourth order in dimensions $d \geq9$, J. Differential Equations, 251 (2011), 3381-3402.
doi: 10.1016/j.jde.2011.08.009.![]() ![]() ![]() |
[34] |
A. Mielke, The Ginzburg-Landau equation in its role as a modulation equation, North-Holland, Amsterdam, Handbook of Dynamical Systems, 2 (2002), 759-834.
doi: 10.1016/S1874-575X(02)80036-4.![]() ![]() ![]() |
[35] |
I. Moerdijk and G. Reyes, Models for Smooth Infinitesimal Analysis, , Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4757-4143-8.![]() ![]() ![]() ![]() |
[36] |
N. Nouaili and H. Zaag, Construction of a blow-up solution for the complex Ginzburg-Landau equation in a critical case, Arch. Ration. Mech. Anal., 228 (2018), 995-1058.
doi: 10.1007/s00205-017-1211-3.![]() ![]() ![]() |
[37] |
B. Pausader, Global well-posedness for energy-critical fourth-order Schrödinger equation in the radial case, Dyn. Partial Differ. Equ., 4 (2007), 197-225.
doi: 10.4310/DPDE.2007.v4.n3.a1.![]() ![]() ![]() |
[38] |
J. Simon, Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360.![]() ![]() ![]() |
[39] |
J. Speck, Stable ODE-type blowup for some quasilinear wave equations with derivative-quadratic nonlinearity, ANALYSIS & PDE, 13 (2020), 93-146.
doi: 10.2140/apde.2020.13.93.![]() ![]() ![]() |
[40] |
K. Stewartson and J. T. Stuart, A non-linear instability theory for a wave system in plane Poiseuille flow, J. Fluid Mech., 48 (1971), 529-545.
doi: 10.1017/S0022112071001733.![]() ![]() ![]() |