[1]
|
S. Bonhoeffer, R. M. May, G. M. Shaw and M. A. Nowak, Virus dynamics and drug therapy, Proc. Natl. Acad. Sci. USA, 94 (1997), 6971-6976.
doi: 10.1073/pnas.94.13.6971.
|
[2]
|
N. Chomont, et al., HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation, Nat. Med., 15 (2009), 893-900.
doi: 10.1038/nm.1972.
|
[3]
|
T.-W. Chun, L. Stuyver, S. B. Mizell, L. A. Ehler, J. A. M. Mican, M. Baseler, A. L. Lloyd, M. A. Nowak and A. S. Fauci, Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy, Proc. Natl. Acad. Sci., 94 (1997), 13193-13197.
doi: 10.1073/pnas.94.24.13193.
|
[4]
|
M. C. Ciupe, B. L. Bivort, D. M. Bortz and P. W. Nelson, Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models, Math. Biosci., 200 (2006), 1-27.
doi: 10.1016/j.mbs.2005.12.006.
|
[5]
|
A. M. Elaiw and A. D. Al Agha, A reaction-diffusion model for oncolytic M1 virotherapy with distributed delays, Eur. Phys. J. Plus, 135 (2020), 117.
doi: 10.1140/epjp/s13360-020-00188-z.
doi: 10.1140/epjp/s13360-020-00188-z.
|
[6]
|
W. E. Fitzgibbon, Semilinear functional differential equations in Banach space, J. Differ. Equ., 29 (1978), 1-14.
doi: 10.1016/0022-0396(78)90037-2.
|
[7]
|
G. A. Funk, V. A. A. Jansen, S. Bonhoeffer and T. Killingback, Spatial models of virus-immune dynamics, J. Theor. Biol., 233 (2005), 221-236.
doi: 10.1016/j.jtbi.2004.10.004.
|
[8]
|
K. Hattaf, Spatiotemporal dynamics of a generalized viral infection model with distributed delays and CTL immune response, Computation, 7 (2019), 1-16.
doi: 10.3390/computation7020021.
|
[9]
|
K. Hattaf and N. Yousfi, Global stability for reaction-diffusion equations in biology, Comput. Math. Appl., 66 (2013), 1488-1497.
doi: 10.1016/j.camwa.2013.08.023.
|
[10]
|
D. Henry, Geometric Theory of Semilinear Parabolic Equations Lecture Notes in Mathematics, Springer, Berlin, 840 1981.
|
[11]
|
G. Huang, Y. Takeuchi and A. Korobeinikov, HIV evolution and progression of the infection to AIDS, J. Theor. Biol., 307 (2012), 149-159.
doi: 10.1016/j.jtbi.2012.05.013.
|
[12]
|
Y. Ji and L. Liu, Global stability of a delayed viral infection model with nonlinear immune response and general incidence rate, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 133-149.
doi: 10.3934/dcdsb.2016.21.133.
|
[13]
|
C. Jiang, K. Wang and L. Song, Global dynamics of a delay virus model with recruitment and saturation effects of immune responses, Math. Biosci. Eng., 14 (2017), 1233-1246.
doi: 10.3934/mbe.2017063.
|
[14]
|
C. Jiang and W. Wang, Complete classification of global dynamics of a virus model with immune responses, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1087-1103.
doi: 10.3934/dcdsb.2014.19.1087.
|
[15]
|
J. P. LaSalle, The stability of dynamical systems, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, (1976).
|
[16]
|
B. Li, Y. Chen, X. Lu and S. Liu, A delayed HIV-1 model with virus waning term, Math. Biosci. Eng., 13 (2016), 135-157.
doi: 10.3934/mbe.2016.13.135.
|
[17]
|
X. Lu, L. Hui, S. Liu and J. Li, A mathematical model of HTLV-I infection with two time delays, Math. Biosci. Eng., 12 (2015), 431-449.
doi: 10.3934/mbe.2015.12.431.
|
[18]
|
R. H. Jr. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Am. Math. Soc., 321 (1990), 1-44.
doi: 10.2307/2001590.
|
[19]
|
R. H. Jr. Martin and H. L. Smith, Reaction-diffusion systems with time delays: monotonicity, invariance, comparison and convergence, J. Reine Angenw. Math., 413 (1991), 1-35.
doi: 10.1515/crll.1991.413.1.
|
[20]
|
C. C. McCluskey and Y. Yang, Global stability of a diffusive virus dynamics model with general incidence function and time delay, Nonlinear Anal. RWA, 25 (2015), 64-78.
doi: 10.1016/j.nonrwa.2015.03.002.
|
[21]
|
H. Miao, Z. Teng, X. Abdurahman and Z. Li, Global stability of a diffusive and delayed virus infection model with general incidence function and adaptive immune response, Comput. Appl. Math., 37 (2018), 3780-3805.
doi: 10.1007/s40314-017-0543-9.
|
[22]
|
J. E. Mittler, B. Sulzer, A. U. Neumann and A. S. Perelson, Influence of delayed viral production on viral dynamics in HIV-1 infected patients, Math. Biosci., 152 (1998), 143-163.
doi: 10.1016/S0025-5564(98)10027-5.
|
[23]
|
B. A. Mock, Longitudinal patterns of trypanosome infections in red-spotted newts, J. Parasitol., 73 (1987), 730-737.
doi: 10.2307/3282402.
|
[24]
|
P. W. Nelson, J. D. Murray and A. S. Perelson, A model of HIV-1 pathogenesis that includes an intracellular delay, Math. Biosci., 163 (2000), 201-215.
doi: 10.1016/S0025-5564(99)00055-3.
|
[25]
|
M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79.
doi: 10.1126/science.272.5258.74.
|
[26]
|
K. A. Pawelek, S. Liu, F. Pahlevani and L. Rong, A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient data, Math. Biosci., 235 (2012), 98-109.
doi: 10.1016/j.mbs.2011.11.002.
|
[27]
|
A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41 (1999), 3-44.
doi: 10.1137/S0036144598335107.
|
[28]
|
A. K. Perelson, D. E. Kirschner and R. De Boer, Dynamics of HIV infection of CD4$+$T cells, Math. Biosci., 114 (1993), 81-125.
doi: 10.1016/0025-5564(93)90043-A.
|
[29]
|
X. Ren, Y. Tian, L. Liu and X. Liu, A reaction-diffusion within-host HIV model with cell-to-cell transmission, J. Math. Biol., 76 (2018), 1831-1872.
doi: 10.1007/s00285-017-1202-x.
|
[30]
|
L. Rong and A. S. Perelson, Asymmetric division of activated latently infected cells may explain the decay kinetics of the HIV-1 latent reservoir and intermittent viral blips, Math. Biosci., 217 (2009), 77-87.
doi: 10.1016/j.mbs.2008.10.006.
|
[31]
|
L. Rong and A. S. Perelson, Modeling latently infected cell activation: Viral and latent reservoir persistence, and viral blips in HIV-infected patients on potent therapy, PLoS Comput. Biol., 5 (2009), e1000533, 18 pp.
doi: 10.1371/journal.pcbi.1000533.
doi: 10.1371/journal.pcbi.1000533.
|
[32]
|
L. Rong and A. S. Perelson, Modeling HIV persistence, the latent reservoir, and viral blips, J. Theoret. Biol., 260 (2009), 308-331.
doi: 10.1016/j.jtbi.2009.06.011.
|
[33]
|
S. G. Ruan and J. H. Wu, Reaction-diffusion equations with infinite delay, Can. Appl. Math. Q., 2 (1994), 485-550.
|
[34]
|
H. Shu, L. Wang and J. Watmough, Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses, SIAM J. Appl. Math., 73 (2013), 1280-1302.
doi: 10.1137/120896463.
|
[35]
|
R. P. Sigdel and C. C. McCluskey, Global stability for an SEI model of infectious disease with immigration, Appl. Math. Comput., 243 (2014), 684-689.
doi: 10.1016/j.amc.2014.06.020.
|
[36]
|
H. Sun and J. Wang, Dynamics of a diffusive virus model with general incidence function, cell-to-cell transmission and time delay, Comput. Math. Appl., 77 (2019), 284-301.
doi: 10.1016/j.camwa.2018.09.032.
|
[37]
|
S. Tang, Z. Teng and H. Miao, Global dynamics of a reaction-diffusion virus infection model with humoral immunity and nonlinear incidence, Comput. Math. Appl., 78 (2019), 786-806.
doi: 10.1016/j.camwa.2019.03.004.
|
[38]
|
C. C. Travis and G. F. Webb, Existence and stability for partial functional differential equations, Trans. Am. Math. Soc., 200 (1974), 395-418.
doi: 10.1090/S0002-9947-1974-0382808-3.
|
[39]
|
H. Wang, R. Xu, Z. Wang and H. Chen, Global dynamics of a class of HIV-1 infection models with latently infected cells, Nonlinear Anal. Model. Control, 20 (2015), 21-37.
doi: 10.15388/NA.2015.1.2.
|
[40]
|
J. Wang, M. Guo, X. Liu and Z. Zhao, Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay, Appl. Math. Comput., 291 (2016), 149-161.
doi: 10.1016/j.amc.2016.06.032.
|
[41]
|
K. Wang and W. Wang, Propagation of HBV with spatial dependence, Math. Biosci., 210 (2007), 78-95.
doi: 10.1016/j.mbs.2007.05.004.
|
[42]
|
S. Wang, J. Zhang, F. Xu and X. Song, Dynamics of virus infection models with density-dependent diffusion, Comput. Math. Appl., 74 (2017), 2403-2422.
doi: 10.1016/j.camwa.2017.07.019.
|
[43]
|
X. Wang, S. Tang, X. Song and L. Rong, Mathematical analysis of an HIV latent infection model including both virus-to-cell infection and cell-to-cell transmission, J. Biol. Dynam., 11 (2017), 1-29.
doi: 10.1080/17513758.2016.1242784.
|
[44]
|
X. Wang, X. Tang, Z. Wang and X. Li, Global dynamics of a diffusive viral infection model with general incidence function and distributed delays, Ricerche Mat., 69 (2020), 683-702.
doi: 10.1007/s11587-020-00481-0.
|
[45]
|
D. Wodarz, M. A. Nowak and C. R. M. Bangham, The dynamics of HTLV-I and the CTL response, Immunol. Today, 20 (1999), 220-227.
doi: 10.1016/S0167-5699(99)01446-2.
|
[46]
|
D. Wodarz and M. A. Nowak, Immune responses and viral phenotype: do replication rate and cytopathogenicity influence virus load?, Comput. Math. Methods Med., 2 (2000), 113-127.
doi: 10.1080/10273660008833041.
|
[47]
|
World Health Organization, HIV/AIDS, 2018-19-7, https://www.who.int/news-room/fact-sheets/detail/hiv-aids.
|
[48]
|
J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer, New York, 1996.
doi: 10.1007/978-1-4612-4050-1.
doi: 10.1007/978-1-4612-4050-1.
|
[49]
|
J. Xu, Y. Geng and J. Hou, Global dynamics of a diffusive and delayed viral infection model with cellular infection and nonlinear infection rate, Comput. Math. Appl., 73 (2017), 640-652.
doi: 10.1016/j.camwa.2016.12.032.
|
[50]
|
J. Xu and Y. Zhou, Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay, Math. Biosci. Eng., 13 (2016), 343-367.
doi: 10.3934/mbe.2015006.
|
[51]
|
Y. Yang, Y. Dong and Y. Takeuchi, Global dynamics of a latent HIV infection model with general incidence function and multiple delays, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 783-800.
doi: 10.3934/dcdsb.2018207.
|
[52]
|
Y. Yang, T. Zhang, Y. Xu and J. Zhou, A delayed virus infection model with cell-to-cell transmission and CTL immune response, Int. J. Bifurcat. Chaos, 27 (2017), 1750150.
doi: 10.1142/S0218127417501504.
doi: 10.1142/S0218127417501504.
|
[53]
|
Z. Yuan and X. Zou, Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays, Math. Biosci. Eng., 10 (2013), 483-498.
doi: 10.3934/mbe.2013.10.483.
|
[54]
|
H. Zhu and X. Zou, Impact of delays in cell infection and virus production on HIV-1 dynamics, Math. Med. Biol., 25 (2008), 99-112.
doi: 10.1093/imammb/dqm010.
|