We consider the logistic family $ f_{a} $ and a family of homeomorphisms $ \phi _{q} $. The $ q $-deformed system is given by the composition map $ f_{a}\circ \phi _{q} $. We study when this system has non zero fixed points which are LAS and GAS. We also give an alternative approach to study the dynamics of the $ q $-deformed system with special emphasis on the so-called Parrondo's paradox finding parameter values $ a $ for which $ f_{a} $ is simple while $ f_{a}\circ \phi _{q} $ is dynamically complicated. We explore the dynamics when several $ q $-deformations are applied.
Citation: |
Figure 4.
For
Figure 5.
We fix
Figure 6.
With accuracy
Figure 7.
Level curves of the topological entropy of the
Figure 8.
For
[1] |
R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319.
doi: 10.1090/S0002-9947-1965-0175106-9.![]() ![]() ![]() |
[2] |
L. Alsedá, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, World Scientific Publishing, 1993.
doi: 10.1142/1980.![]() ![]() ![]() ![]() |
[3] |
F. Balibrea and V. Jiménez-López, The measure of scrambled sets: A survey, Acta Univ. M. Belii Ser. Math., 7 (1999), 3-11.
![]() ![]() |
[4] |
S. Banerjee and R. Parthsarathy, A $q$-deformed logistic map and its implications, J. Phys. A, 44 (2011), 045104.
doi: 10.1088/1751-8113/44/4/045104.![]() ![]() ![]() ![]() |
[5] |
S. Behnia, M. Yahyavi and R. Habibpourbisafar, Watermarking based on discrete wavelet transform and $q$-deformed chaotic map, Chaos Solitons & Fractals, 104 (2017), 6-17.
doi: 10.1016/j.chaos.2017.07.020.![]() ![]() |
[6] |
F. Blanchard, E. Glasner, S. Kolyada and A. Maass, On Li-Yorke pairs, J. Reine Angew. Math., 547 (2002), 51-68.
doi: 10.1515/crll.2002.053.![]() ![]() ![]() |
[7] |
L. Block, J. Keesling, S. H. Li and K. Peterson, An improved algorithm for computing topological entropy, J. Stat. Phys., 55 (1989), 929-939.
doi: 10.1007/BF01041072.![]() ![]() ![]() |
[8] |
J. S. Cánovas, A. Linero and D. Peralta-Salas, Dynamic Parrondo's paradox, Phys. D, 218 (2006), 177-184.
doi: 10.1016/j.physd.2006.05.004.![]() ![]() ![]() |
[9] |
J. S. Cánovas and M. Muñoz, Revisiting Parrondo's paradox for the logistic family, Fluct. Noise Lett., 12 (2013), 1350015.
doi: 10.1142/S0219477513500156.![]() ![]() ![]() |
[10] |
J. Cánovas and M. Muñoz, On the dynamics of the q-deformed logistic map, Phys. Lett. A, 383 (2019), 1742-1754.
doi: 10.1016/j.physleta.2019.03.003.![]() ![]() ![]() |
[11] |
M. Chaichian, A. P. Demichev and P. P. Kulish, Quasi-classical limit in $q$-deformed systems, non-commutativity and the $q$-path integral, Phys. Lett. A, 233 (1997), 251-260.
doi: 10.1016/S0375-9601(97)00513-6.![]() ![]() ![]() |
[12] |
W. de Melo and S. van Strien, One Dimensional Dynamics, Springer Verlag, 1993.
doi: 10.1007/978-3-642-78043-1.![]() ![]() ![]() ![]() |
[13] |
S. N. Elaydi, Discrete Chaos. With Applications in Science and Engineering, Chapman & Hall CRC, Boca Raton, 2008.
![]() ![]() |
[14] |
J. Graczyk, D. Sands and G. Światek, Metric attractors for smooth unimodal maps, Ann. Math., 159 (2004), 725-740.
doi: 10.4007/annals.2004.159.725.![]() ![]() ![]() |
[15] |
J. Guckenheimer, Sensitive dependence to initial conditions for one dimensional maps, Commun. Math. Phys., 70 (1979), 133-160.
doi: 10.1007/BF01982351.![]() ![]() ![]() |
[16] |
R. Jaganathan and S. Sinha, A $q$-deformed nonlinear map, Phys. Lett. A, 338 (2005), 277-287.
doi: 10.1016/j.physleta.2005.02.042.![]() ![]() ![]() |
[17] |
Y. A. Kuznetsov, Saddle-node bifurcation for maps, Scholarpedia 3 (2008), 4399.
doi: 10.4249/scholarpedia.4399.![]() ![]() ![]() |
[18] |
V. I. Man'ko, G. Marmo, S. Solimeno and F. Zaccaria, Physical Nonlinear aspects of classical and quantum q-oscillators, Int. J. Mod. Phys. A, 8 (1993), 3577-3597.
doi: 10.1142/S0217751X93001454.![]() ![]() ![]() |
[19] |
T. Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly, 82 (1975), 985-992.
doi: 10.1080/00029890.1975.11994008.![]() ![]() ![]() |
[20] |
E. Liz, A global picture of the Gamma-Ricker map: A flexible discrete-time model with factors of positive and negative density dependence, Bull. Math. Biol., 80 (2018), 417-434.
doi: 10.1007/s11538-017-0382-2.![]() ![]() ![]() |
[21] |
C. Luo, B.-Q. Liu and H.-S. Hou, Fractional chaotic maps with $q$-deformation, Appl. Math. Comput., 393 (2021), 125759.
doi: 10.1016/j.amc.2020.125759.![]() ![]() ![]() ![]() |
[22] |
J. Milnor, On the concept of attractor, Comm. Math. Phys., 99 (1985), 177-195.
doi: 10.1007/BF01212280.![]() ![]() ![]() |
[23] |
J. Milnor and W. Thurston, On iterated maps of the interval, in Dynamical Systems, Lectures Notes in Mathematics, Springer-Verlag, 1342 1988,465–563.
doi: 10.1007/BFb0082847.![]() ![]() ![]() ![]() |
[24] |
M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Studia Math., 67 (1980), 45-63.
doi: 10.4064/sm-67-1-45-63.![]() ![]() ![]() |
[25] |
V. Patidar, G. Purohit and K. K. Sud, Dynamical behavior of $q$-deformed Henon map, Int. J. Bifurc. Chaos, 21 (2011), 1349-1356.
doi: 10.1142/S0218127411029215.![]() ![]() ![]() |
[26] |
S. J. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models, Theor. Popul. Biol., 64 (2003), 201-209.
doi: 10.1016/S0040-5809(03)00072-8.![]() ![]() |
[27] |
M. D. Shrimali and S. Banerjee, Delayed $q$-deformed logistic map, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 3126-3133.
doi: 10.1016/j.cnsns.2013.03.017.![]() ![]() ![]() |
[28] |
D. Singer, Stable orbits and bifurcations of maps on the interval, SIAM J. Appl. Math., 35 (1978), 260-267.
doi: 10.1137/0135020.![]() ![]() ![]() |
[29] |
J. Smítal, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc., 297 (1986), 269-282.
doi: 10.1090/S0002-9947-1986-0849479-9.![]() ![]() ![]() |
[30] |
C. Tresser, P. Coullet and E. de Faria, Period doubling, Scholarpedia, 9 (2014), 3958.
![]() |
[31] |
C. Tsallis, Nonextensive statistical mechanics: A brief review of its present status, An. Acad. Bras. Ci$\hat{\text{e}}$nc., 74 (2002), 393–414.
doi: 10.1590/S0001-37652002000300003.![]() ![]() ![]() ![]() |
[32] |
G.-C. Wu, M. N. Cankaya and S. Banerjee, Fractional q-deformed chaotic maps: A weight function approach, Chaos, 30 (2020), 121106.
doi: 10.1063/5.0030973.![]() ![]() ![]() ![]() |
(a) The region
(a) The region
(a) The region
For
We fix
With accuracy
Level curves of the topological entropy of the
For
For