In this note, we consider generalizations of the Cucker-Smale dynamical system and we derive rigorously in Wasserstein's type topologies the mean-field limit (and propagation of chaos) to the Vlasov-type equation introduced in [13]. Unlike previous results on the Cucker-Smale model, our approach is not based on the empirical measures, but, using an Eulerian point of view introduced in [9] in the Hamiltonian setting, we show the limit providing explicit constants. Moreover, for non strictly Cucker-Smale particles dynamics, we also give an insight on what induces a flocking behavior of the solution to the Vlasov equation to the - unknown a priori - flocking properties of the original particle system.
Citation: |
[1] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Second Edition, Lectures in Mathematics ETH Zürich. Birlhäuser Verlag, Berlin, 2008.
![]() ![]() |
[2] |
F. Bolley, J. A. Cañizo and J. A. Carrillo, Stochastic mean-field limit: Non-lipschitz forces & swarming, Math. Models Methods Appl. Sci., 21 (2011), 2179-2210.
doi: 10.1142/S0218202511005702.![]() ![]() ![]() |
[3] |
J. A. Cañizo, J. A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Mod. Meth. Appl. Sci., 21 (2011), 515-539.
doi: 10.1142/S0218202511005131.![]() ![]() ![]() |
[4] |
F. Cucker and S. Smale, On the mathematics of emergence, Japan. J. Math., 2 (2007), 197-227.
doi: 10.1007/s11537-007-0647-x.![]() ![]() ![]() |
[5] |
F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842.![]() ![]() ![]() |
[6] |
E. Di Costanzo, M. Menci, E. Messina, R. Natalini and A. Vecchio, A hybrid model of collective motion of discrete particles under alignment and continuum chemotaxis, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 443-472.
doi: 10.3934/dcdsb.2019189.![]() ![]() ![]() |
[7] |
R. L. Dobrušin, Vlasov equations, (Russian), Funktsional. Anal. i Prilozhen, 13 (1979), 48-58.
![]() ![]() |
[8] |
F. Golse, C. Mouhot and V. Ricci, Empirical measures and Vlasov hierarchies, Kinet. Relat. Models, 6 (2013), 919-943.
doi: 10.3934/krm.2013.6.919.![]() ![]() ![]() |
[9] |
F. Golse, C. Mouhot and T. Paul, On the mean field and classical limits of quantum mechanics, Comm. Math. Phys., 343 (2016), 165-205.
doi: 10.1007/s00220-015-2485-7.![]() ![]() ![]() |
[10] |
F. Golse, T. Paul and M. Pulvirenti, On the derivation of the Hartree equation from the $N$-body Schrödinger equation: Uniformity in the Planck constant, J. Funct. Anal., 275 (2018), 1603-1649.
doi: 10.1016/j.jfa.2018.06.008.![]() ![]() ![]() |
[11] |
S.-Y. Ha, J. Kim and X. Zhang, Uniform stability of the Cucker-Smale model and its application to the mean-field limit, Kinet. Relat. Models, 11 (2018), 1157-1181.
doi: 10.3934/krm.2018045.![]() ![]() ![]() |
[12] |
S.-Y. Ha and J.-G. Liu, A simple proof of Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.
doi: 10.4310/CMS.2009.v7.n2.a2.![]() ![]() ![]() |
[13] |
S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415-435.
doi: 10.3934/krm.2008.1.415.![]() ![]() ![]() |
[14] |
P.-E. Jabin and Z. Wang, Mean field limit and propagation of chaos for Vlasov systems with bounded forces, J. Funct. Anal., 271 (2016), 3588-3627.
doi: 10.1016/j.jfa.2016.09.014.![]() ![]() ![]() |
[15] |
P.-E. Jabin and Z. Wang, Quantitative estimates of propagation of chaos for stochastic systems with $W{-1, \infty}$ kernels, Invent. Math., 214 (2018), 523-591.
doi: 10.1007/s00222-018-0808-y.![]() ![]() ![]() |
[16] |
B. Piccoli, F. Rossi and E. Trélat, Control to flocking of the kinetic Cucker-Smale model, SIAM J. Math. Anal., 47 (2015), 4685-4719.
doi: 10.1137/140996501.![]() ![]() ![]() |
[17] |
A.-S. Sznitman, Topics in propagation of chaos, École d'Été de Probabilités de Saint-Flour XIX–-1989, Lecture Notes in Math. 1464, Springer, Berlin, 1991,165–251.
doi: 10.1007/BFb0085169.![]() ![]() ![]() ![]() |
[18] |
C. Villani, Topics in Optimal Transportation, Amer. Math. Soc., Providence (RI), 2003.
doi: 10.1090/gsm/058.![]() ![]() ![]() ![]() |
[19] |
C. Villani, Optimal Transport. Old and New, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-540-71050-9.![]() ![]() ![]() ![]() |