
-
Previous Article
Hartman and Nirenberg type results for systems of delay differential equations under $ (\omega,Q) $-periodic conditions
- DCDS-B Home
- This Issue
-
Next Article
Modeling the influence of human population and human population augmented pollution on rainfall
The effect of spatial variables on the basic reproduction ratio for a reaction-diffusion epidemic model
1. | School of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640, China |
2. | Department of Mathematics and Statistics, Arab American University, 240 Jenin 13, Zababdeh, Palestine |
In this paper, we study the influence of spatial-dependent variables on the basic reproduction ratio ($ \mathcal{R}_0 $) for a scalar reaction-diffusion equation model. We first investigate the principal eigenvalue of a weighted eigenvalue problem and show the influence of spatial variables. We then apply these results to study the effect of spatial heterogeneity and dimension on the basic reproduction ratio for a spatial model of rabies. Numerical simulations also reveal the complicated effects of the spatial variables on $ \mathcal{R}_0 $ in two dimensions.
References:
[1] |
L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai,
Asymptotic profiles of the steady states for an SIS epidemic patch model, SIAM J. Appl. Math., 67 (2007), 1283-1309.
doi: 10.1137/060672522. |
[2] |
L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai,
Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dynam. Syst., 21 (2008), 1-20.
doi: 10.3934/dcds.2008.21.1. |
[3] |
N. Bacaër and S. Guernaoui,
The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436.
doi: 10.1007/s00285-006-0015-0. |
[4] |
S. Chen and J. Shi,
Asymptotic profiles of basic reproduction number for epidemic spreading in heterogeneous environment, SIAM J. Appl. Math., 80 (2020), 1247-1271.
doi: 10.1137/19M1289078. |
[5] |
K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, Heidelberg, 1985.
doi: 10.1007/978-3-662-00547-7. |
[6] |
O. Diekmann, J. Heesterbeek and J. A. Metz,
On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.
doi: 10.1007/BF00178324. |
[7] |
P. van den Driessche and J. Watmough,
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[8] |
D. Gao,
Travel frequency and infectious diseases, SIAM J. Appl. Math., 79 (2019), 1581-1606.
doi: 10.1137/18M1211957. |
[9] |
D. Gao and C. Dong,
Fast diffusion inhibits disease outbreaks, Proc. Amer. Math. Soc., 148 (2020), 1709-1722.
doi: 10.1090/proc/14868. |
[10] |
H. Inaba,
On a new perspective of the basic reproduction number in heterogeneous environments, J. Math. Biol., 65 (2012), 309-348.
doi: 10.1007/s00285-011-0463-z. |
[11] |
D. Jiang, Z. Wang and L. Zhang,
A reaction-diffusion-advection SIS epidemic model in a spatially-temporally heterogeneous environment, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4557-4578.
doi: 10.3934/dcdsb.2018176. |
[12] |
D. Kincaid and W. Cheney, Numerical Analysis: Mathematics of Scientific Computing, 3$^{rd}$ edition, Brooks/Cole, Pacific Grove, CA, 2002. |
[13] |
X. Liang, L. Zhang and X. Zhao,
Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for lyme disease), J. Dynam. Differential Equations, 31 (2019), 1247-1278.
doi: 10.1007/s10884-017-9601-7. |
[14] |
P. Magal, G. F. Webb and Y. Wu,
On the basic reproduction number of reaction-diffusion epidemic models, SIAM J. Appl. Math., 79 (2019), 284-304.
doi: 10.1137/18M1182243. |
[15] |
J. D. Murray, E. A. Stanley and D. L. Brown,
On the spatial spread of rabies among foxes, Proc. Royal Soc. London Ser. B, 229 (1986), 111-150.
|
[16] |
D. Pang and Y. Xiao,
The SIS model with diffusion of virus in the environment, Math. Biosci. Eng., 16 (2019), 2852-2874.
doi: 10.3934/mbe.2019141. |
[17] |
R. Peng and X. Zhao,
A reactionn-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471.
doi: 10.1088/0951-7715/25/5/1451. |
[18] |
D. Posny and J. Wang,
Computing the basic reproductive numbers for epidemiological models in nonhomogeneous environments, Appl. Math. Comput., 242 (2014), 473-490.
doi: 10.1016/j.amc.2014.05.079. |
[19] |
P. Song, Y. Lou and Y. Xiao,
A spatial SEIRS reaction-diffusion model in heterogeneous environment, J. Differential Equations, 267 (2019), 5084-5114.
doi: 10.1016/j.jde.2019.05.022. |
[20] |
H. R. Thieme,
Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.
doi: 10.1137/080732870. |
[21] |
W. Wang and X.-Q. Zhao,
Threshold dynamics for compartmental epidemic models in periodic environments, J. Dynam. Differential Equations, 20 (2008), 699-717.
doi: 10.1007/s10884-008-9111-8. |
[22] |
W. Wang and X.-Q. Zhao,
Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673.
doi: 10.1137/120872942. |
[23] |
F. Yang, W. Li and S. Ruan,
Dynamics of a nonlocal dispersal SIS epidemic model with Neumann boundary conditions, J. Differential Equations, 267 (2019), 2011-2051.
doi: 10.1016/j.jde.2019.03.001. |
[24] |
T. Yang and L. Zhang,
Remarks on basic reproduction ratios for periodic abstract functional differential equations, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 6771-6782.
doi: 10.3934/dcdsb.2019166. |
[25] |
X.-Q. Zhao,
Basic reproduction ratios for periodic compartmental models with time delay, J. Dynam. Differential Equations, 29 (2017), 67-82.
doi: 10.1007/s10884-015-9425-2. |
show all references
References:
[1] |
L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai,
Asymptotic profiles of the steady states for an SIS epidemic patch model, SIAM J. Appl. Math., 67 (2007), 1283-1309.
doi: 10.1137/060672522. |
[2] |
L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai,
Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dynam. Syst., 21 (2008), 1-20.
doi: 10.3934/dcds.2008.21.1. |
[3] |
N. Bacaër and S. Guernaoui,
The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436.
doi: 10.1007/s00285-006-0015-0. |
[4] |
S. Chen and J. Shi,
Asymptotic profiles of basic reproduction number for epidemic spreading in heterogeneous environment, SIAM J. Appl. Math., 80 (2020), 1247-1271.
doi: 10.1137/19M1289078. |
[5] |
K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, Heidelberg, 1985.
doi: 10.1007/978-3-662-00547-7. |
[6] |
O. Diekmann, J. Heesterbeek and J. A. Metz,
On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.
doi: 10.1007/BF00178324. |
[7] |
P. van den Driessche and J. Watmough,
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[8] |
D. Gao,
Travel frequency and infectious diseases, SIAM J. Appl. Math., 79 (2019), 1581-1606.
doi: 10.1137/18M1211957. |
[9] |
D. Gao and C. Dong,
Fast diffusion inhibits disease outbreaks, Proc. Amer. Math. Soc., 148 (2020), 1709-1722.
doi: 10.1090/proc/14868. |
[10] |
H. Inaba,
On a new perspective of the basic reproduction number in heterogeneous environments, J. Math. Biol., 65 (2012), 309-348.
doi: 10.1007/s00285-011-0463-z. |
[11] |
D. Jiang, Z. Wang and L. Zhang,
A reaction-diffusion-advection SIS epidemic model in a spatially-temporally heterogeneous environment, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4557-4578.
doi: 10.3934/dcdsb.2018176. |
[12] |
D. Kincaid and W. Cheney, Numerical Analysis: Mathematics of Scientific Computing, 3$^{rd}$ edition, Brooks/Cole, Pacific Grove, CA, 2002. |
[13] |
X. Liang, L. Zhang and X. Zhao,
Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for lyme disease), J. Dynam. Differential Equations, 31 (2019), 1247-1278.
doi: 10.1007/s10884-017-9601-7. |
[14] |
P. Magal, G. F. Webb and Y. Wu,
On the basic reproduction number of reaction-diffusion epidemic models, SIAM J. Appl. Math., 79 (2019), 284-304.
doi: 10.1137/18M1182243. |
[15] |
J. D. Murray, E. A. Stanley and D. L. Brown,
On the spatial spread of rabies among foxes, Proc. Royal Soc. London Ser. B, 229 (1986), 111-150.
|
[16] |
D. Pang and Y. Xiao,
The SIS model with diffusion of virus in the environment, Math. Biosci. Eng., 16 (2019), 2852-2874.
doi: 10.3934/mbe.2019141. |
[17] |
R. Peng and X. Zhao,
A reactionn-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471.
doi: 10.1088/0951-7715/25/5/1451. |
[18] |
D. Posny and J. Wang,
Computing the basic reproductive numbers for epidemiological models in nonhomogeneous environments, Appl. Math. Comput., 242 (2014), 473-490.
doi: 10.1016/j.amc.2014.05.079. |
[19] |
P. Song, Y. Lou and Y. Xiao,
A spatial SEIRS reaction-diffusion model in heterogeneous environment, J. Differential Equations, 267 (2019), 5084-5114.
doi: 10.1016/j.jde.2019.05.022. |
[20] |
H. R. Thieme,
Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.
doi: 10.1137/080732870. |
[21] |
W. Wang and X.-Q. Zhao,
Threshold dynamics for compartmental epidemic models in periodic environments, J. Dynam. Differential Equations, 20 (2008), 699-717.
doi: 10.1007/s10884-008-9111-8. |
[22] |
W. Wang and X.-Q. Zhao,
Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673.
doi: 10.1137/120872942. |
[23] |
F. Yang, W. Li and S. Ruan,
Dynamics of a nonlocal dispersal SIS epidemic model with Neumann boundary conditions, J. Differential Equations, 267 (2019), 2011-2051.
doi: 10.1016/j.jde.2019.03.001. |
[24] |
T. Yang and L. Zhang,
Remarks on basic reproduction ratios for periodic abstract functional differential equations, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 6771-6782.
doi: 10.3934/dcdsb.2019166. |
[25] |
X.-Q. Zhao,
Basic reproduction ratios for periodic compartmental models with time delay, J. Dynam. Differential Equations, 29 (2017), 67-82.
doi: 10.1007/s10884-015-9425-2. |


[1] |
Xiaoyan Zhang, Yuxiang Zhang. Spatial dynamics of a reaction-diffusion cholera model with spatial heterogeneity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2625-2640. doi: 10.3934/dcdsb.2018124 |
[2] |
Linda J. S. Allen, B. M. Bolker, Yuan Lou, A. L. Nevai. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 1-20. doi: 10.3934/dcds.2008.21.1 |
[3] |
Haomin Huang, Mingxin Wang. The reaction-diffusion system for an SIR epidemic model with a free boundary. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2039-2050. doi: 10.3934/dcdsb.2015.20.2039 |
[4] |
Wenzhang Huang, Maoan Han, Kaiyu Liu. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences & Engineering, 2010, 7 (1) : 51-66. doi: 10.3934/mbe.2010.7.51 |
[5] |
Liang Zhang, Zhi-Cheng Wang. Threshold dynamics of a reaction-diffusion epidemic model with stage structure. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3797-3820. doi: 10.3934/dcdsb.2017191 |
[6] |
Geng Lai, Wancheng Sheng, Yuxi Zheng. Simple waves and pressure delta waves for a Chaplygin gas in two-dimensions. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 489-523. doi: 10.3934/dcds.2011.31.489 |
[7] |
W. E. Fitzgibbon, M.E. Parrott, Glenn Webb. Diffusive epidemic models with spatial and age dependent heterogeneity. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 35-57. doi: 10.3934/dcds.1995.1.35 |
[8] |
M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079 |
[9] |
Chengxia Lei, Jie Xiong, Xinhui Zhou. Qualitative analysis on an SIS epidemic reaction-diffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 81-98. doi: 10.3934/dcdsb.2019173 |
[10] |
Silviu Dumitru Pavăl, Alex Vasilică, Alin Adochiei. Qualitative and quantitative analysis of a nonlinear second-order anisotropic reaction-diffusion model of an epidemic infection spread. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022094 |
[11] |
Takashi Kajiwara. A Heteroclinic Solution to a Variational Problem Corresponding to FitzHugh-Nagumo type Reaction-Diffusion System with Heterogeneity. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2133-2156. doi: 10.3934/cpaa.2017106 |
[12] |
Takashi Kajiwara. The sub-supersolution method for the FitzHugh-Nagumo type reaction-diffusion system with heterogeneity. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2441-2465. doi: 10.3934/dcds.2018101 |
[13] |
Yasumasa Nishiura, Takashi Teramoto, Xiaohui Yuan. Heterogeneity-induced spot dynamics for a three-component reaction-diffusion system. Communications on Pure and Applied Analysis, 2012, 11 (1) : 307-338. doi: 10.3934/cpaa.2012.11.307 |
[14] |
Shuling Yan, Shangjiang Guo. Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1559-1579. doi: 10.3934/dcdsb.2018059 |
[15] |
Costică Moroşanu. Stability and errors analysis of two iterative schemes of fractional steps type associated to a nonlinear reaction-diffusion equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1567-1587. doi: 10.3934/dcdss.2020089 |
[16] |
Elvira Barbera, Giancarlo Consolo, Giovanna Valenti. A two or three compartments hyperbolic reaction-diffusion model for the aquatic food chain. Mathematical Biosciences & Engineering, 2015, 12 (3) : 451-472. doi: 10.3934/mbe.2015.12.451 |
[17] |
H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3785-3801. doi: 10.3934/dcdss.2020433 |
[18] |
Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382 |
[19] |
Nick Bessonov, Gennady Bocharov, Tarik Mohammed Touaoula, Sergei Trofimchuk, Vitaly Volpert. Delay reaction-diffusion equation for infection dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2073-2091. doi: 10.3934/dcdsb.2019085 |
[20] |
Keng Deng. On a nonlocal reaction-diffusion population model. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 65-73. doi: 10.3934/dcdsb.2008.9.65 |
2020 Impact Factor: 1.327
Tools
Article outline
Figures and Tables
[Back to Top]