In this paper, we consider a stochastic predator-prey model with general functional response, which is perturbed by nonlinear Lévy jumps. Firstly, We show that this model has a unique global positive solution with uniform boundedness of $ \theta\in(0,1] $-th moment. Secondly, we obtain the threshold for extinction and exponential ergodicity of the one-dimensional Logistic system with nonlinear perturbations. Then based on the results of Logistic system, we introduce a new technique to study the ergodic stationary distribution for the stochastic predator-prey model with general functional response and nonlinear jump-diffusion, and derive the sufficient and almost necessary condition for extinction and ergodicity.
Citation: |
[1] |
D. Applebaum, Lévy Process and Stochastic Calculus, Cambridge University Press, New York, 2009.
doi: 10.1017/CBO9780511809781.![]() ![]() ![]() |
[2] |
J. Bao and C. Yuan, Comparison theorem for stochastic differential delay equations with jumps, Acta Appl. Math., 116 (2011), 119-132.
doi: 10.1007/s10440-011-9633-7.![]() ![]() ![]() |
[3] |
J. Bao, X. Mao, G. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal.-Throe., 74 (2011), 6601-6616.
doi: 10.1016/j.na.2011.06.043.![]() ![]() ![]() |
[4] |
J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331-340.
doi: 10.2307/3866.![]() ![]() |
[5] |
Y. Cai and X. Mao, Stochastic prey-predator system with foraging arena scheme, Appl. Math. Model., 64 (2018), 357-371.
doi: 10.1016/j.apm.2018.07.034.![]() ![]() ![]() |
[6] |
R. S. Cantrell and C. Cosner, On the dynamics of predator-prey models with the Beddington-Deangelis functional response, J. Math. Anal. Appl., 257 (2001), 206-222.
doi: 10.1006/jmaa.2000.7343.![]() ![]() ![]() |
[7] |
S. Chen, J. Wei and J. Yu, Stationary patterns of a diffusive predator-prey model with Crowley-Martin functional response, Nonlinear Anal.-Real World Appl., 39 (2018), 33-57.
doi: 10.1016/j.nonrwa.2017.05.005.![]() ![]() ![]() |
[8] |
Z. Cowan, M. S. Pratchett, V. Messmer and S. Ling, Known predators of crown-of-thorns starfish (Acanthaster spp.) and their role in mitigating, if not preventing, population outbreaks, Diversity-Basel, 9 (2017), 7.
doi: 10.3390/d9010007.![]() ![]() |
[9] |
P. H. Crowley and E. K. Martin, Functional responses and interference within and between year classes of a dragonfly population, J. North Am. Benthol. Soc., 8 (1989), 211-221.
doi: 10.2307/1467324.![]() ![]() |
[10] |
A. Das and G. P. Samanta, Stochastic prey-predator model with additional food for predator, Physica A, 512 (2018), 121-141.
doi: 10.1016/j.physa.2018.08.138.![]() ![]() ![]() |
[11] |
N. H. Du, N. H. Dang and G. Yin, Conditions for permanence and ergodicity of certain stochastic predator-prey models, J. Appl. Probab., 53 (2016), 187-202.
doi: 10.1017/jpr.2015.18.![]() ![]() ![]() |
[12] |
N. H. Du, D. H. Dang and G. Yin, Conditions for permanence and ergodicity of certain stochastic predator-prey models, J. Appl. Probab., 53 (2016), 187-202.
doi: 10.1017/jpr.2015.18.![]() ![]() ![]() |
[13] |
R. Has'miniskii, Ergodic properties of recurrent diffusion processes and stabilization of the Cauchy problem for parabolic equations, Theory Probab. Appl., 5 (1960), 179-196.
![]() |
[14] |
C. S. Holling, The components of predation as revealed by a study of small-mammal predation of the european pine sawfly, Can. Entomol., 91 (1959), 293-320.
doi: 10.4039/Ent91293-5.![]() ![]() |
[15] |
C. S. Holling, Some characteristics of simple types of predation and parasitism, Can. Entomol., 91 (1959), 385-398.
doi: 10.4039/Ent91385-7.![]() ![]() |
[16] |
C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Memoirs of the Entomological Society of Canada, 97 (1965), 5-60.
doi: 10.4039/entm9745fv.![]() ![]() |
[17] |
K. Ichihara and H. Kunita, A classification of the second order degenerate elliptic operators and its probabilistic characerization, Z. Wahrsch. Verw. Gebiete, 39 (1977), 81-84.
doi: 10.1007/BF01844875.![]() ![]() ![]() |
[18] |
S. Li, J. Wu and Y. Dong, Effects of a degeneracy in a diffusive predato-prey model with Holling Ⅱ functional response, Nonlinear Anal.-Real World Appl., 43 (2018), 78-95.
doi: 10.1016/j.nonrwa.2018.02.003.![]() ![]() ![]() |
[19] |
Q. Liu and D. Jiang, Influence of the fear factor on the dynamics of a stochastic predator-prey model, Appl. Math. Lett., 112 (2021), 106756.
doi: 10.1016/j.aml.2020.106756.![]() ![]() ![]() |
[20] |
M. Liu and P. S. Mandal, Dynamical behavior of a one-prey two-prey model with random perturbations, Commun. Nonlinear Sci. Numer. Simulat., 28 (2015), 123-137.
doi: 10.1016/j.cnsns.2015.04.010.![]() ![]() ![]() |
[21] |
M. Liu and Y. Zhu, Stationary distribution and ergodicity of a stochastic hybrid competition model with Levy jumps, Nonlinear Anal-Hybrid Syst., 30 (2018), 225-239.
doi: 10.1016/j.nahs.2018.05.002.![]() ![]() ![]() |
[22] |
Q. Liu, D. Jiang, T. Hayat, A. Alsaedi and B. Ahmad, A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate, Physica A, 551 (2020), 124152.
doi: 10.1016/j.physa.2020.124152.![]() ![]() ![]() |
[23] |
Q. Liu, D. Jiang, T. Hayat and B. Ahmad, Stationary distribution and extinction of a stochastic predator-prey model with additional food and nonlinear perturbation, Appl. Math. Comput., 320 (2018), 226-239.
doi: 10.1016/j.amc.2017.09.030.![]() ![]() ![]() |
[24] |
A. J. Lotka, Elements of Physical Biology, William and Wilkins, Baltimore, 1925.
![]() |
[25] |
X. Mao, G. Marion and E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Proc. Appl., 97 (2002), 95-110.
doi: 10.1016/S0304-4149(01)00126-0.![]() ![]() ![]() |
[26] |
X. Mao and C. Yuan, Stochastic Differential Equations With Markovian Switching, Imperial College Press, London, 2006.
doi: 10.1142/p473.![]() ![]() ![]() |
[27] |
X. Mao, G. Marion and E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stochastic Process. Appl., 97 (2002), 95-110.
doi: 10.1016/S0304-4149(01)00126-0.![]() ![]() ![]() |
[28] |
R. M. May, Stability and Complexity in Model Ecosystems, Princeton University, 1973.
![]() |
[29] |
S. P. Meyn and R. L. Tweedie, Stability of Markovian processes Ⅲ: Foster-Lyapunov criteria for continuous-time processes, Dav. Appl. Prob., 25 (1993), 518-548.
doi: 10.2307/1427522.![]() ![]() ![]() |
[30] |
H. M. Safuan, H. S. Sidhu, Z. Jovanoski and I. N. Towers, Impacts of biotic resource enrichment on a predator-prey population, Bull. Math. Biol., 75 (2013), 1798-1812.
doi: 10.1007/s11538-013-9869-7.![]() ![]() ![]() |
[31] |
V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie d'animali conviventi, Mem. Accd. Lincei, 2 (1926), 31-113.
![]() |
[32] |
L. Wang and D. Jiang, Ergodic property of the chemostat: A stochastic model under regime switching and with general response function, Nonlinear Anal-Hybrid Syst., 27 (2018), 341-352.
doi: 10.1016/j.nahs.2017.10.001.![]() ![]() ![]() |
[33] |
F. Xi, Asymptotic properties of jump-diffusion processes with state-dependent switching, Stoch. Proc. Appl., 119 (2009), 2198-2221.
doi: 10.1016/j.spa.2008.11.001.![]() ![]() ![]() |
[34] |
X. Yu and S. Yuan, Asymptotic properties of a stochastic chemostat model with two distributed delays and nonlinear perturbation, Discrete Continuous Dynam. Systems - B, 25 (2020), 2373-2390.
doi: 10.3934/dcdsb.2020014.![]() ![]() ![]() |
[35] |
X. Zhang, Y. Li and D. Jiang, Dynamics of a stochastic Holliing type Ⅱ predator-prey model with hyperboic mortality, Nonlinear Dyn., 87 (2017), 2011-2020.
![]() |
[36] |
X. Zhang, The global dynamics of stochastic Holling type Ⅱ predator-prey models with non constant mortality rate, Filomat, 31 (2017), 5811-5825.
doi: 10.2298/FIL1718811Z.![]() ![]() ![]() |
[37] |
X. Zou, Y. Zhen, L. Zhang and J. Lv, Survivability and stochastic bifurcations for a stochatic Holling type Ⅱ predator-prey model, Commun. Nonlinear Sci. Numer. Simulat., 83 (2020), 105136.
doi: 10.1016/j.cnsns.2019.105136.![]() ![]() ![]() |
[38] |
J. Zu and M. Mimura, The impact of Allee effect on a predator-prey system with Holling Ⅱ functional response, Appl. Math. Comput., 217 (2010), 3542-3556.
doi: 10.1016/j.amc.2010.09.029.![]() ![]() ![]() |
The left column shows the numbers of
Simulations of the solution in stochastic system (26) with initial value