June  2022, 27(6): 3155-3175. doi: 10.3934/dcdsb.2021177

Dynamical behavior of a stochastic predator-prey model with general functional response and nonlinear jump-diffusion

College of Science, China University of Petroleum, Qingdao 266580, Shandong Province, China

* Corresponding author: Xinhong Zhang

Received  March 2021 Revised  May 2021 Published  June 2022 Early access  July 2021

Fund Project: The first author is supported by National Natural Science Foundation of China Grant 11801566 and the Fundamental Research Funds for the Central Universities of China grant 19CX02059A

In this paper, we consider a stochastic predator-prey model with general functional response, which is perturbed by nonlinear Lévy jumps. Firstly, We show that this model has a unique global positive solution with uniform boundedness of $ \theta\in(0,1] $-th moment. Secondly, we obtain the threshold for extinction and exponential ergodicity of the one-dimensional Logistic system with nonlinear perturbations. Then based on the results of Logistic system, we introduce a new technique to study the ergodic stationary distribution for the stochastic predator-prey model with general functional response and nonlinear jump-diffusion, and derive the sufficient and almost necessary condition for extinction and ergodicity.

Citation: Xinhong Zhang, Qing Yang. Dynamical behavior of a stochastic predator-prey model with general functional response and nonlinear jump-diffusion. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3155-3175. doi: 10.3934/dcdsb.2021177
References:
[1] D. Applebaum, Lévy Process and Stochastic Calculus, Cambridge University Press, New York, 2009.  doi: 10.1017/CBO9780511809781.
[2]

J. Bao and C. Yuan, Comparison theorem for stochastic differential delay equations with jumps, Acta Appl. Math., 116 (2011), 119-132.  doi: 10.1007/s10440-011-9633-7.

[3]

J. BaoX. MaoG. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal.-Throe., 74 (2011), 6601-6616.  doi: 10.1016/j.na.2011.06.043.

[4]

J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331-340.  doi: 10.2307/3866.

[5]

Y. Cai and X. Mao, Stochastic prey-predator system with foraging arena scheme, Appl. Math. Model., 64 (2018), 357-371.  doi: 10.1016/j.apm.2018.07.034.

[6]

R. S. Cantrell and C. Cosner, On the dynamics of predator-prey models with the Beddington-Deangelis functional response, J. Math. Anal. Appl., 257 (2001), 206-222.  doi: 10.1006/jmaa.2000.7343.

[7]

S. ChenJ. Wei and J. Yu, Stationary patterns of a diffusive predator-prey model with Crowley-Martin functional response, Nonlinear Anal.-Real World Appl., 39 (2018), 33-57.  doi: 10.1016/j.nonrwa.2017.05.005.

[8]

Z. Cowan, M. S. Pratchett, V. Messmer and S. Ling, Known predators of crown-of-thorns starfish (Acanthaster spp.) and their role in mitigating, if not preventing, population outbreaks, Diversity-Basel, 9 (2017), 7. doi: 10.3390/d9010007.

[9]

P. H. Crowley and E. K. Martin, Functional responses and interference within and between year classes of a dragonfly population, J. North Am. Benthol. Soc., 8 (1989), 211-221.  doi: 10.2307/1467324.

[10]

A. Das and G. P. Samanta, Stochastic prey-predator model with additional food for predator, Physica A, 512 (2018), 121-141.  doi: 10.1016/j.physa.2018.08.138.

[11]

N. H. DuN. H. Dang and G. Yin, Conditions for permanence and ergodicity of certain stochastic predator-prey models, J. Appl. Probab., 53 (2016), 187-202.  doi: 10.1017/jpr.2015.18.

[12]

N. H. DuD. H. Dang and G. Yin, Conditions for permanence and ergodicity of certain stochastic predator-prey models, J. Appl. Probab., 53 (2016), 187-202.  doi: 10.1017/jpr.2015.18.

[13]

R. Has'miniskii, Ergodic properties of recurrent diffusion processes and stabilization of the Cauchy problem for parabolic equations, Theory Probab. Appl., 5 (1960), 179-196. 

[14]

C. S. Holling, The components of predation as revealed by a study of small-mammal predation of the european pine sawfly, Can. Entomol., 91 (1959), 293-320.  doi: 10.4039/Ent91293-5.

[15]

C. S. Holling, Some characteristics of simple types of predation and parasitism, Can. Entomol., 91 (1959), 385-398.  doi: 10.4039/Ent91385-7.

[16]

C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Memoirs of the Entomological Society of Canada, 97 (1965), 5-60.  doi: 10.4039/entm9745fv.

[17]

K. Ichihara and H. Kunita, A classification of the second order degenerate elliptic operators and its probabilistic characerization, Z. Wahrsch. Verw. Gebiete, 39 (1977), 81-84.  doi: 10.1007/BF01844875.

[18]

S. LiJ. Wu and Y. Dong, Effects of a degeneracy in a diffusive predato-prey model with Holling Ⅱ functional response, Nonlinear Anal.-Real World Appl., 43 (2018), 78-95.  doi: 10.1016/j.nonrwa.2018.02.003.

[19]

Q. Liu and D. Jiang, Influence of the fear factor on the dynamics of a stochastic predator-prey model, Appl. Math. Lett., 112 (2021), 106756. doi: 10.1016/j.aml.2020.106756.

[20]

M. Liu and P. S. Mandal, Dynamical behavior of a one-prey two-prey model with random perturbations, Commun. Nonlinear Sci. Numer. Simulat., 28 (2015), 123-137.  doi: 10.1016/j.cnsns.2015.04.010.

[21]

M. Liu and Y. Zhu, Stationary distribution and ergodicity of a stochastic hybrid competition model with Levy jumps, Nonlinear Anal-Hybrid Syst., 30 (2018), 225-239.  doi: 10.1016/j.nahs.2018.05.002.

[22]

Q. Liu, D. Jiang, T. Hayat, A. Alsaedi and B. Ahmad, A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate, Physica A, 551 (2020), 124152. doi: 10.1016/j.physa.2020.124152.

[23]

Q. LiuD. JiangT. Hayat and B. Ahmad, Stationary distribution and extinction of a stochastic predator-prey model with additional food and nonlinear perturbation, Appl. Math. Comput., 320 (2018), 226-239.  doi: 10.1016/j.amc.2017.09.030.

[24]

A. J. Lotka, Elements of Physical Biology, William and Wilkins, Baltimore, 1925.

[25]

X. MaoG. Marion and E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Proc. Appl., 97 (2002), 95-110.  doi: 10.1016/S0304-4149(01)00126-0.

[26] X. Mao and C. Yuan, Stochastic Differential Equations With Markovian Switching, Imperial College Press, London, 2006.  doi: 10.1142/p473.
[27]

X. MaoG. Marion and E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stochastic Process. Appl., 97 (2002), 95-110.  doi: 10.1016/S0304-4149(01)00126-0.

[28]

R. M. May, Stability and Complexity in Model Ecosystems, Princeton University, 1973.

[29]

S. P. Meyn and R. L. Tweedie, Stability of Markovian processes Ⅲ: Foster-Lyapunov criteria for continuous-time processes, Dav. Appl. Prob., 25 (1993), 518-548.  doi: 10.2307/1427522.

[30]

H. M. SafuanH. S. SidhuZ. Jovanoski and I. N. Towers, Impacts of biotic resource enrichment on a predator-prey population, Bull. Math. Biol., 75 (2013), 1798-1812.  doi: 10.1007/s11538-013-9869-7.

[31]

V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie d'animali conviventi, Mem. Accd. Lincei, 2 (1926), 31-113. 

[32]

L. Wang and D. Jiang, Ergodic property of the chemostat: A stochastic model under regime switching and with general response function, Nonlinear Anal-Hybrid Syst., 27 (2018), 341-352.  doi: 10.1016/j.nahs.2017.10.001.

[33]

F. Xi, Asymptotic properties of jump-diffusion processes with state-dependent switching, Stoch. Proc. Appl., 119 (2009), 2198-2221.  doi: 10.1016/j.spa.2008.11.001.

[34]

X. Yu and S. Yuan, Asymptotic properties of a stochastic chemostat model with two distributed delays and nonlinear perturbation, Discrete Continuous Dynam. Systems - B, 25 (2020), 2373-2390.  doi: 10.3934/dcdsb.2020014.

[35]

X. ZhangY. Li and D. Jiang, Dynamics of a stochastic Holliing type Ⅱ predator-prey model with hyperboic mortality, Nonlinear Dyn., 87 (2017), 2011-2020. 

[36]

X. Zhang, The global dynamics of stochastic Holling type Ⅱ predator-prey models with non constant mortality rate, Filomat, 31 (2017), 5811-5825.  doi: 10.2298/FIL1718811Z.

[37]

X. Zou, Y. Zhen, L. Zhang and J. Lv, Survivability and stochastic bifurcations for a stochatic Holling type Ⅱ predator-prey model, Commun. Nonlinear Sci. Numer. Simulat., 83 (2020), 105136. doi: 10.1016/j.cnsns.2019.105136.

[38]

J. Zu and M. Mimura, The impact of Allee effect on a predator-prey system with Holling Ⅱ functional response, Appl. Math. Comput., 217 (2010), 3542-3556.  doi: 10.1016/j.amc.2010.09.029.

show all references

References:
[1] D. Applebaum, Lévy Process and Stochastic Calculus, Cambridge University Press, New York, 2009.  doi: 10.1017/CBO9780511809781.
[2]

J. Bao and C. Yuan, Comparison theorem for stochastic differential delay equations with jumps, Acta Appl. Math., 116 (2011), 119-132.  doi: 10.1007/s10440-011-9633-7.

[3]

J. BaoX. MaoG. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal.-Throe., 74 (2011), 6601-6616.  doi: 10.1016/j.na.2011.06.043.

[4]

J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331-340.  doi: 10.2307/3866.

[5]

Y. Cai and X. Mao, Stochastic prey-predator system with foraging arena scheme, Appl. Math. Model., 64 (2018), 357-371.  doi: 10.1016/j.apm.2018.07.034.

[6]

R. S. Cantrell and C. Cosner, On the dynamics of predator-prey models with the Beddington-Deangelis functional response, J. Math. Anal. Appl., 257 (2001), 206-222.  doi: 10.1006/jmaa.2000.7343.

[7]

S. ChenJ. Wei and J. Yu, Stationary patterns of a diffusive predator-prey model with Crowley-Martin functional response, Nonlinear Anal.-Real World Appl., 39 (2018), 33-57.  doi: 10.1016/j.nonrwa.2017.05.005.

[8]

Z. Cowan, M. S. Pratchett, V. Messmer and S. Ling, Known predators of crown-of-thorns starfish (Acanthaster spp.) and their role in mitigating, if not preventing, population outbreaks, Diversity-Basel, 9 (2017), 7. doi: 10.3390/d9010007.

[9]

P. H. Crowley and E. K. Martin, Functional responses and interference within and between year classes of a dragonfly population, J. North Am. Benthol. Soc., 8 (1989), 211-221.  doi: 10.2307/1467324.

[10]

A. Das and G. P. Samanta, Stochastic prey-predator model with additional food for predator, Physica A, 512 (2018), 121-141.  doi: 10.1016/j.physa.2018.08.138.

[11]

N. H. DuN. H. Dang and G. Yin, Conditions for permanence and ergodicity of certain stochastic predator-prey models, J. Appl. Probab., 53 (2016), 187-202.  doi: 10.1017/jpr.2015.18.

[12]

N. H. DuD. H. Dang and G. Yin, Conditions for permanence and ergodicity of certain stochastic predator-prey models, J. Appl. Probab., 53 (2016), 187-202.  doi: 10.1017/jpr.2015.18.

[13]

R. Has'miniskii, Ergodic properties of recurrent diffusion processes and stabilization of the Cauchy problem for parabolic equations, Theory Probab. Appl., 5 (1960), 179-196. 

[14]

C. S. Holling, The components of predation as revealed by a study of small-mammal predation of the european pine sawfly, Can. Entomol., 91 (1959), 293-320.  doi: 10.4039/Ent91293-5.

[15]

C. S. Holling, Some characteristics of simple types of predation and parasitism, Can. Entomol., 91 (1959), 385-398.  doi: 10.4039/Ent91385-7.

[16]

C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Memoirs of the Entomological Society of Canada, 97 (1965), 5-60.  doi: 10.4039/entm9745fv.

[17]

K. Ichihara and H. Kunita, A classification of the second order degenerate elliptic operators and its probabilistic characerization, Z. Wahrsch. Verw. Gebiete, 39 (1977), 81-84.  doi: 10.1007/BF01844875.

[18]

S. LiJ. Wu and Y. Dong, Effects of a degeneracy in a diffusive predato-prey model with Holling Ⅱ functional response, Nonlinear Anal.-Real World Appl., 43 (2018), 78-95.  doi: 10.1016/j.nonrwa.2018.02.003.

[19]

Q. Liu and D. Jiang, Influence of the fear factor on the dynamics of a stochastic predator-prey model, Appl. Math. Lett., 112 (2021), 106756. doi: 10.1016/j.aml.2020.106756.

[20]

M. Liu and P. S. Mandal, Dynamical behavior of a one-prey two-prey model with random perturbations, Commun. Nonlinear Sci. Numer. Simulat., 28 (2015), 123-137.  doi: 10.1016/j.cnsns.2015.04.010.

[21]

M. Liu and Y. Zhu, Stationary distribution and ergodicity of a stochastic hybrid competition model with Levy jumps, Nonlinear Anal-Hybrid Syst., 30 (2018), 225-239.  doi: 10.1016/j.nahs.2018.05.002.

[22]

Q. Liu, D. Jiang, T. Hayat, A. Alsaedi and B. Ahmad, A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate, Physica A, 551 (2020), 124152. doi: 10.1016/j.physa.2020.124152.

[23]

Q. LiuD. JiangT. Hayat and B. Ahmad, Stationary distribution and extinction of a stochastic predator-prey model with additional food and nonlinear perturbation, Appl. Math. Comput., 320 (2018), 226-239.  doi: 10.1016/j.amc.2017.09.030.

[24]

A. J. Lotka, Elements of Physical Biology, William and Wilkins, Baltimore, 1925.

[25]

X. MaoG. Marion and E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Proc. Appl., 97 (2002), 95-110.  doi: 10.1016/S0304-4149(01)00126-0.

[26] X. Mao and C. Yuan, Stochastic Differential Equations With Markovian Switching, Imperial College Press, London, 2006.  doi: 10.1142/p473.
[27]

X. MaoG. Marion and E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stochastic Process. Appl., 97 (2002), 95-110.  doi: 10.1016/S0304-4149(01)00126-0.

[28]

R. M. May, Stability and Complexity in Model Ecosystems, Princeton University, 1973.

[29]

S. P. Meyn and R. L. Tweedie, Stability of Markovian processes Ⅲ: Foster-Lyapunov criteria for continuous-time processes, Dav. Appl. Prob., 25 (1993), 518-548.  doi: 10.2307/1427522.

[30]

H. M. SafuanH. S. SidhuZ. Jovanoski and I. N. Towers, Impacts of biotic resource enrichment on a predator-prey population, Bull. Math. Biol., 75 (2013), 1798-1812.  doi: 10.1007/s11538-013-9869-7.

[31]

V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie d'animali conviventi, Mem. Accd. Lincei, 2 (1926), 31-113. 

[32]

L. Wang and D. Jiang, Ergodic property of the chemostat: A stochastic model under regime switching and with general response function, Nonlinear Anal-Hybrid Syst., 27 (2018), 341-352.  doi: 10.1016/j.nahs.2017.10.001.

[33]

F. Xi, Asymptotic properties of jump-diffusion processes with state-dependent switching, Stoch. Proc. Appl., 119 (2009), 2198-2221.  doi: 10.1016/j.spa.2008.11.001.

[34]

X. Yu and S. Yuan, Asymptotic properties of a stochastic chemostat model with two distributed delays and nonlinear perturbation, Discrete Continuous Dynam. Systems - B, 25 (2020), 2373-2390.  doi: 10.3934/dcdsb.2020014.

[35]

X. ZhangY. Li and D. Jiang, Dynamics of a stochastic Holliing type Ⅱ predator-prey model with hyperboic mortality, Nonlinear Dyn., 87 (2017), 2011-2020. 

[36]

X. Zhang, The global dynamics of stochastic Holling type Ⅱ predator-prey models with non constant mortality rate, Filomat, 31 (2017), 5811-5825.  doi: 10.2298/FIL1718811Z.

[37]

X. Zou, Y. Zhen, L. Zhang and J. Lv, Survivability and stochastic bifurcations for a stochatic Holling type Ⅱ predator-prey model, Commun. Nonlinear Sci. Numer. Simulat., 83 (2020), 105136. doi: 10.1016/j.cnsns.2019.105136.

[38]

J. Zu and M. Mimura, The impact of Allee effect on a predator-prey system with Holling Ⅱ functional response, Appl. Math. Comput., 217 (2010), 3542-3556.  doi: 10.1016/j.amc.2010.09.029.

Figure 1.  The left column shows the numbers of $ x(t),y(t) $ in system (26) with $ \alpha_{11} = \alpha_{12} = 0.2 $ and $ \alpha_{21} = \alpha_{22} = 0.1 $. The right column represents the histogram of the probability density functions of $ x,y $ individuals
Figure 2.  Simulations of the solution in stochastic system (26) with initial value $ \alpha_{11} = \alpha_{12} = 0.2 $ and $ \alpha_{21} = \alpha_{22} = 1.5 $
[1]

Hongwei Yin, Xiaoyong Xiao, Xiaoqing Wen. Analysis of a Lévy-diffusion Leslie-Gower predator-prey model with nonmonotonic functional response. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2121-2151. doi: 10.3934/dcdsb.2018228

[2]

Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75

[3]

Haiying Jing, Zhaoyu Yang. The impact of state feedback control on a predator-prey model with functional response. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 607-614. doi: 10.3934/dcdsb.2004.4.607

[4]

Yinshu Wu, Wenzhang Huang. Global stability of the predator-prey model with a sigmoid functional response. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1159-1167. doi: 10.3934/dcdsb.2019214

[5]

Yanlin Zhang, Qi Cheng, Shengfu Deng. Qualitative structure of a discrete predator-prey model with nonmonotonic functional response. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022065

[6]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[7]

Xiao He, Sining Zheng. Bifurcation analysis and dynamic behavior to a predator-prey model with Beddington-DeAngelis functional response and protection zone. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4641-4657. doi: 10.3934/dcdsb.2020117

[8]

Sze-Bi Hsu, Tzy-Wei Hwang, Yang Kuang. Global dynamics of a Predator-Prey model with Hassell-Varley Type functional response. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 857-871. doi: 10.3934/dcdsb.2008.10.857

[9]

Wan-Tong Li, Yong-Hong Fan. Periodic solutions in a delayed predator-prey models with nonmonotonic functional response. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 175-185. doi: 10.3934/dcdsb.2007.8.175

[10]

Eduardo González-Olivares, Betsabé González-Yañez, Jaime Mena-Lorca, José D. Flores. Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey. Mathematical Biosciences & Engineering, 2013, 10 (2) : 345-367. doi: 10.3934/mbe.2013.10.345

[11]

Shangzhi Li, Shangjiang Guo. Persistence and extinction of a stochastic SIS epidemic model with regime switching and Lévy jumps. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5101-5134. doi: 10.3934/dcdsb.2020335

[12]

Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875

[13]

Zengji Du, Xiao Chen, Zhaosheng Feng. Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1203-1214. doi: 10.3934/dcdss.2014.7.1203

[14]

Shanshan Chen, Junping Shi, Junjie Wei. The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Communications on Pure and Applied Analysis, 2013, 12 (1) : 481-501. doi: 10.3934/cpaa.2013.12.481

[15]

H. W. Broer, K. Saleh, V. Naudot, R. Roussarie. Dynamics of a predator-prey model with non-monotonic response function. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 221-251. doi: 10.3934/dcds.2007.18.221

[16]

Xin Jiang, Zhikun She, Shigui Ruan. Global dynamics of a predator-prey system with density-dependent mortality and ratio-dependent functional response. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1967-1990. doi: 10.3934/dcdsb.2020041

[17]

Zhijun Liu, Weidong Wang. Persistence and periodic solutions of a nonautonomous predator-prey diffusion with Holling III functional response and continuous delay. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 653-662. doi: 10.3934/dcdsb.2004.4.653

[18]

Haiyin Li, Yasuhiro Takeuchi. Dynamics of the density dependent and nonautonomous predator-prey system with Beddington-DeAngelis functional response. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1117-1134. doi: 10.3934/dcdsb.2015.20.1117

[19]

Tongtong Chen, Jixun Chu. Hopf bifurcation for a predator-prey model with age structure and ratio-dependent response function incorporating a prey refuge. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022082

[20]

Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 391-405. doi: 10.3934/naco.2020033

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (438)
  • HTML views (442)
  • Cited by (0)

Other articles
by authors

[Back to Top]