doi: 10.3934/dcdsb.2021177
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Dynamical behavior of a stochastic predator-prey model with general functional response and nonlinear jump-diffusion

College of Science, China University of Petroleum, Qingdao 266580, Shandong Province, China

* Corresponding author: Xinhong Zhang

Received  March 2021 Revised  May 2021 Early access July 2021

Fund Project: The first author is supported by National Natural Science Foundation of China Grant 11801566 and the Fundamental Research Funds for the Central Universities of China grant 19CX02059A

In this paper, we consider a stochastic predator-prey model with general functional response, which is perturbed by nonlinear Lévy jumps. Firstly, We show that this model has a unique global positive solution with uniform boundedness of $ \theta\in(0,1] $-th moment. Secondly, we obtain the threshold for extinction and exponential ergodicity of the one-dimensional Logistic system with nonlinear perturbations. Then based on the results of Logistic system, we introduce a new technique to study the ergodic stationary distribution for the stochastic predator-prey model with general functional response and nonlinear jump-diffusion, and derive the sufficient and almost necessary condition for extinction and ergodicity.

Citation: Xinhong Zhang, Qing Yang. Dynamical behavior of a stochastic predator-prey model with general functional response and nonlinear jump-diffusion. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021177
References:
[1] D. Applebaum, Lévy Process and Stochastic Calculus, Cambridge University Press, New York, 2009.  doi: 10.1017/CBO9780511809781.  Google Scholar
[2]

J. Bao and C. Yuan, Comparison theorem for stochastic differential delay equations with jumps, Acta Appl. Math., 116 (2011), 119-132.  doi: 10.1007/s10440-011-9633-7.  Google Scholar

[3]

J. BaoX. MaoG. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal.-Throe., 74 (2011), 6601-6616.  doi: 10.1016/j.na.2011.06.043.  Google Scholar

[4]

J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331-340.  doi: 10.2307/3866.  Google Scholar

[5]

Y. Cai and X. Mao, Stochastic prey-predator system with foraging arena scheme, Appl. Math. Model., 64 (2018), 357-371.  doi: 10.1016/j.apm.2018.07.034.  Google Scholar

[6]

R. S. Cantrell and C. Cosner, On the dynamics of predator-prey models with the Beddington-Deangelis functional response, J. Math. Anal. Appl., 257 (2001), 206-222.  doi: 10.1006/jmaa.2000.7343.  Google Scholar

[7]

S. ChenJ. Wei and J. Yu, Stationary patterns of a diffusive predator-prey model with Crowley-Martin functional response, Nonlinear Anal.-Real World Appl., 39 (2018), 33-57.  doi: 10.1016/j.nonrwa.2017.05.005.  Google Scholar

[8]

Z. Cowan, M. S. Pratchett, V. Messmer and S. Ling, Known predators of crown-of-thorns starfish (Acanthaster spp.) and their role in mitigating, if not preventing, population outbreaks, Diversity-Basel, 9 (2017), 7. doi: 10.3390/d9010007.  Google Scholar

[9]

P. H. Crowley and E. K. Martin, Functional responses and interference within and between year classes of a dragonfly population, J. North Am. Benthol. Soc., 8 (1989), 211-221.  doi: 10.2307/1467324.  Google Scholar

[10]

A. Das and G. P. Samanta, Stochastic prey-predator model with additional food for predator, Physica A, 512 (2018), 121-141.  doi: 10.1016/j.physa.2018.08.138.  Google Scholar

[11]

N. H. DuN. H. Dang and G. Yin, Conditions for permanence and ergodicity of certain stochastic predator-prey models, J. Appl. Probab., 53 (2016), 187-202.  doi: 10.1017/jpr.2015.18.  Google Scholar

[12]

N. H. DuD. H. Dang and G. Yin, Conditions for permanence and ergodicity of certain stochastic predator-prey models, J. Appl. Probab., 53 (2016), 187-202.  doi: 10.1017/jpr.2015.18.  Google Scholar

[13]

R. Has'miniskii, Ergodic properties of recurrent diffusion processes and stabilization of the Cauchy problem for parabolic equations, Theory Probab. Appl., 5 (1960), 179-196.   Google Scholar

[14]

C. S. Holling, The components of predation as revealed by a study of small-mammal predation of the european pine sawfly, Can. Entomol., 91 (1959), 293-320.  doi: 10.4039/Ent91293-5.  Google Scholar

[15]

C. S. Holling, Some characteristics of simple types of predation and parasitism, Can. Entomol., 91 (1959), 385-398.  doi: 10.4039/Ent91385-7.  Google Scholar

[16]

C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Memoirs of the Entomological Society of Canada, 97 (1965), 5-60.  doi: 10.4039/entm9745fv.  Google Scholar

[17]

K. Ichihara and H. Kunita, A classification of the second order degenerate elliptic operators and its probabilistic characerization, Z. Wahrsch. Verw. Gebiete, 39 (1977), 81-84.  doi: 10.1007/BF01844875.  Google Scholar

[18]

S. LiJ. Wu and Y. Dong, Effects of a degeneracy in a diffusive predato-prey model with Holling Ⅱ functional response, Nonlinear Anal.-Real World Appl., 43 (2018), 78-95.  doi: 10.1016/j.nonrwa.2018.02.003.  Google Scholar

[19]

Q. Liu and D. Jiang, Influence of the fear factor on the dynamics of a stochastic predator-prey model, Appl. Math. Lett., 112 (2021), 106756. doi: 10.1016/j.aml.2020.106756.  Google Scholar

[20]

M. Liu and P. S. Mandal, Dynamical behavior of a one-prey two-prey model with random perturbations, Commun. Nonlinear Sci. Numer. Simulat., 28 (2015), 123-137.  doi: 10.1016/j.cnsns.2015.04.010.  Google Scholar

[21]

M. Liu and Y. Zhu, Stationary distribution and ergodicity of a stochastic hybrid competition model with Levy jumps, Nonlinear Anal-Hybrid Syst., 30 (2018), 225-239.  doi: 10.1016/j.nahs.2018.05.002.  Google Scholar

[22]

Q. Liu, D. Jiang, T. Hayat, A. Alsaedi and B. Ahmad, A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate, Physica A, 551 (2020), 124152. doi: 10.1016/j.physa.2020.124152.  Google Scholar

[23]

Q. LiuD. JiangT. Hayat and B. Ahmad, Stationary distribution and extinction of a stochastic predator-prey model with additional food and nonlinear perturbation, Appl. Math. Comput., 320 (2018), 226-239.  doi: 10.1016/j.amc.2017.09.030.  Google Scholar

[24]

A. J. Lotka, Elements of Physical Biology, William and Wilkins, Baltimore, 1925. Google Scholar

[25]

X. MaoG. Marion and E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Proc. Appl., 97 (2002), 95-110.  doi: 10.1016/S0304-4149(01)00126-0.  Google Scholar

[26] X. Mao and C. Yuan, Stochastic Differential Equations With Markovian Switching, Imperial College Press, London, 2006.  doi: 10.1142/p473.  Google Scholar
[27]

X. MaoG. Marion and E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stochastic Process. Appl., 97 (2002), 95-110.  doi: 10.1016/S0304-4149(01)00126-0.  Google Scholar

[28]

R. M. May, Stability and Complexity in Model Ecosystems, Princeton University, 1973. Google Scholar

[29]

S. P. Meyn and R. L. Tweedie, Stability of Markovian processes Ⅲ: Foster-Lyapunov criteria for continuous-time processes, Dav. Appl. Prob., 25 (1993), 518-548.  doi: 10.2307/1427522.  Google Scholar

[30]

H. M. SafuanH. S. SidhuZ. Jovanoski and I. N. Towers, Impacts of biotic resource enrichment on a predator-prey population, Bull. Math. Biol., 75 (2013), 1798-1812.  doi: 10.1007/s11538-013-9869-7.  Google Scholar

[31]

V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie d'animali conviventi, Mem. Accd. Lincei, 2 (1926), 31-113.   Google Scholar

[32]

L. Wang and D. Jiang, Ergodic property of the chemostat: A stochastic model under regime switching and with general response function, Nonlinear Anal-Hybrid Syst., 27 (2018), 341-352.  doi: 10.1016/j.nahs.2017.10.001.  Google Scholar

[33]

F. Xi, Asymptotic properties of jump-diffusion processes with state-dependent switching, Stoch. Proc. Appl., 119 (2009), 2198-2221.  doi: 10.1016/j.spa.2008.11.001.  Google Scholar

[34]

X. Yu and S. Yuan, Asymptotic properties of a stochastic chemostat model with two distributed delays and nonlinear perturbation, Discrete Continuous Dynam. Systems - B, 25 (2020), 2373-2390.  doi: 10.3934/dcdsb.2020014.  Google Scholar

[35]

X. ZhangY. Li and D. Jiang, Dynamics of a stochastic Holliing type Ⅱ predator-prey model with hyperboic mortality, Nonlinear Dyn., 87 (2017), 2011-2020.   Google Scholar

[36]

X. Zhang, The global dynamics of stochastic Holling type Ⅱ predator-prey models with non constant mortality rate, Filomat, 31 (2017), 5811-5825.  doi: 10.2298/FIL1718811Z.  Google Scholar

[37]

X. Zou, Y. Zhen, L. Zhang and J. Lv, Survivability and stochastic bifurcations for a stochatic Holling type Ⅱ predator-prey model, Commun. Nonlinear Sci. Numer. Simulat., 83 (2020), 105136. doi: 10.1016/j.cnsns.2019.105136.  Google Scholar

[38]

J. Zu and M. Mimura, The impact of Allee effect on a predator-prey system with Holling Ⅱ functional response, Appl. Math. Comput., 217 (2010), 3542-3556.  doi: 10.1016/j.amc.2010.09.029.  Google Scholar

show all references

References:
[1] D. Applebaum, Lévy Process and Stochastic Calculus, Cambridge University Press, New York, 2009.  doi: 10.1017/CBO9780511809781.  Google Scholar
[2]

J. Bao and C. Yuan, Comparison theorem for stochastic differential delay equations with jumps, Acta Appl. Math., 116 (2011), 119-132.  doi: 10.1007/s10440-011-9633-7.  Google Scholar

[3]

J. BaoX. MaoG. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal.-Throe., 74 (2011), 6601-6616.  doi: 10.1016/j.na.2011.06.043.  Google Scholar

[4]

J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331-340.  doi: 10.2307/3866.  Google Scholar

[5]

Y. Cai and X. Mao, Stochastic prey-predator system with foraging arena scheme, Appl. Math. Model., 64 (2018), 357-371.  doi: 10.1016/j.apm.2018.07.034.  Google Scholar

[6]

R. S. Cantrell and C. Cosner, On the dynamics of predator-prey models with the Beddington-Deangelis functional response, J. Math. Anal. Appl., 257 (2001), 206-222.  doi: 10.1006/jmaa.2000.7343.  Google Scholar

[7]

S. ChenJ. Wei and J. Yu, Stationary patterns of a diffusive predator-prey model with Crowley-Martin functional response, Nonlinear Anal.-Real World Appl., 39 (2018), 33-57.  doi: 10.1016/j.nonrwa.2017.05.005.  Google Scholar

[8]

Z. Cowan, M. S. Pratchett, V. Messmer and S. Ling, Known predators of crown-of-thorns starfish (Acanthaster spp.) and their role in mitigating, if not preventing, population outbreaks, Diversity-Basel, 9 (2017), 7. doi: 10.3390/d9010007.  Google Scholar

[9]

P. H. Crowley and E. K. Martin, Functional responses and interference within and between year classes of a dragonfly population, J. North Am. Benthol. Soc., 8 (1989), 211-221.  doi: 10.2307/1467324.  Google Scholar

[10]

A. Das and G. P. Samanta, Stochastic prey-predator model with additional food for predator, Physica A, 512 (2018), 121-141.  doi: 10.1016/j.physa.2018.08.138.  Google Scholar

[11]

N. H. DuN. H. Dang and G. Yin, Conditions for permanence and ergodicity of certain stochastic predator-prey models, J. Appl. Probab., 53 (2016), 187-202.  doi: 10.1017/jpr.2015.18.  Google Scholar

[12]

N. H. DuD. H. Dang and G. Yin, Conditions for permanence and ergodicity of certain stochastic predator-prey models, J. Appl. Probab., 53 (2016), 187-202.  doi: 10.1017/jpr.2015.18.  Google Scholar

[13]

R. Has'miniskii, Ergodic properties of recurrent diffusion processes and stabilization of the Cauchy problem for parabolic equations, Theory Probab. Appl., 5 (1960), 179-196.   Google Scholar

[14]

C. S. Holling, The components of predation as revealed by a study of small-mammal predation of the european pine sawfly, Can. Entomol., 91 (1959), 293-320.  doi: 10.4039/Ent91293-5.  Google Scholar

[15]

C. S. Holling, Some characteristics of simple types of predation and parasitism, Can. Entomol., 91 (1959), 385-398.  doi: 10.4039/Ent91385-7.  Google Scholar

[16]

C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Memoirs of the Entomological Society of Canada, 97 (1965), 5-60.  doi: 10.4039/entm9745fv.  Google Scholar

[17]

K. Ichihara and H. Kunita, A classification of the second order degenerate elliptic operators and its probabilistic characerization, Z. Wahrsch. Verw. Gebiete, 39 (1977), 81-84.  doi: 10.1007/BF01844875.  Google Scholar

[18]

S. LiJ. Wu and Y. Dong, Effects of a degeneracy in a diffusive predato-prey model with Holling Ⅱ functional response, Nonlinear Anal.-Real World Appl., 43 (2018), 78-95.  doi: 10.1016/j.nonrwa.2018.02.003.  Google Scholar

[19]

Q. Liu and D. Jiang, Influence of the fear factor on the dynamics of a stochastic predator-prey model, Appl. Math. Lett., 112 (2021), 106756. doi: 10.1016/j.aml.2020.106756.  Google Scholar

[20]

M. Liu and P. S. Mandal, Dynamical behavior of a one-prey two-prey model with random perturbations, Commun. Nonlinear Sci. Numer. Simulat., 28 (2015), 123-137.  doi: 10.1016/j.cnsns.2015.04.010.  Google Scholar

[21]

M. Liu and Y. Zhu, Stationary distribution and ergodicity of a stochastic hybrid competition model with Levy jumps, Nonlinear Anal-Hybrid Syst., 30 (2018), 225-239.  doi: 10.1016/j.nahs.2018.05.002.  Google Scholar

[22]

Q. Liu, D. Jiang, T. Hayat, A. Alsaedi and B. Ahmad, A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate, Physica A, 551 (2020), 124152. doi: 10.1016/j.physa.2020.124152.  Google Scholar

[23]

Q. LiuD. JiangT. Hayat and B. Ahmad, Stationary distribution and extinction of a stochastic predator-prey model with additional food and nonlinear perturbation, Appl. Math. Comput., 320 (2018), 226-239.  doi: 10.1016/j.amc.2017.09.030.  Google Scholar

[24]

A. J. Lotka, Elements of Physical Biology, William and Wilkins, Baltimore, 1925. Google Scholar

[25]

X. MaoG. Marion and E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Proc. Appl., 97 (2002), 95-110.  doi: 10.1016/S0304-4149(01)00126-0.  Google Scholar

[26] X. Mao and C. Yuan, Stochastic Differential Equations With Markovian Switching, Imperial College Press, London, 2006.  doi: 10.1142/p473.  Google Scholar
[27]

X. MaoG. Marion and E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stochastic Process. Appl., 97 (2002), 95-110.  doi: 10.1016/S0304-4149(01)00126-0.  Google Scholar

[28]

R. M. May, Stability and Complexity in Model Ecosystems, Princeton University, 1973. Google Scholar

[29]

S. P. Meyn and R. L. Tweedie, Stability of Markovian processes Ⅲ: Foster-Lyapunov criteria for continuous-time processes, Dav. Appl. Prob., 25 (1993), 518-548.  doi: 10.2307/1427522.  Google Scholar

[30]

H. M. SafuanH. S. SidhuZ. Jovanoski and I. N. Towers, Impacts of biotic resource enrichment on a predator-prey population, Bull. Math. Biol., 75 (2013), 1798-1812.  doi: 10.1007/s11538-013-9869-7.  Google Scholar

[31]

V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie d'animali conviventi, Mem. Accd. Lincei, 2 (1926), 31-113.   Google Scholar

[32]

L. Wang and D. Jiang, Ergodic property of the chemostat: A stochastic model under regime switching and with general response function, Nonlinear Anal-Hybrid Syst., 27 (2018), 341-352.  doi: 10.1016/j.nahs.2017.10.001.  Google Scholar

[33]

F. Xi, Asymptotic properties of jump-diffusion processes with state-dependent switching, Stoch. Proc. Appl., 119 (2009), 2198-2221.  doi: 10.1016/j.spa.2008.11.001.  Google Scholar

[34]

X. Yu and S. Yuan, Asymptotic properties of a stochastic chemostat model with two distributed delays and nonlinear perturbation, Discrete Continuous Dynam. Systems - B, 25 (2020), 2373-2390.  doi: 10.3934/dcdsb.2020014.  Google Scholar

[35]

X. ZhangY. Li and D. Jiang, Dynamics of a stochastic Holliing type Ⅱ predator-prey model with hyperboic mortality, Nonlinear Dyn., 87 (2017), 2011-2020.   Google Scholar

[36]

X. Zhang, The global dynamics of stochastic Holling type Ⅱ predator-prey models with non constant mortality rate, Filomat, 31 (2017), 5811-5825.  doi: 10.2298/FIL1718811Z.  Google Scholar

[37]

X. Zou, Y. Zhen, L. Zhang and J. Lv, Survivability and stochastic bifurcations for a stochatic Holling type Ⅱ predator-prey model, Commun. Nonlinear Sci. Numer. Simulat., 83 (2020), 105136. doi: 10.1016/j.cnsns.2019.105136.  Google Scholar

[38]

J. Zu and M. Mimura, The impact of Allee effect on a predator-prey system with Holling Ⅱ functional response, Appl. Math. Comput., 217 (2010), 3542-3556.  doi: 10.1016/j.amc.2010.09.029.  Google Scholar

Figure 1.  The left column shows the numbers of $ x(t),y(t) $ in system (26) with $ \alpha_{11} = \alpha_{12} = 0.2 $ and $ \alpha_{21} = \alpha_{22} = 0.1 $. The right column represents the histogram of the probability density functions of $ x,y $ individuals
Figure 2.  Simulations of the solution in stochastic system (26) with initial value $ \alpha_{11} = \alpha_{12} = 0.2 $ and $ \alpha_{21} = \alpha_{22} = 1.5 $
[1]

Hongwei Yin, Xiaoyong Xiao, Xiaoqing Wen. Analysis of a Lévy-diffusion Leslie-Gower predator-prey model with nonmonotonic functional response. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2121-2151. doi: 10.3934/dcdsb.2018228

[2]

Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75

[3]

Haiying Jing, Zhaoyu Yang. The impact of state feedback control on a predator-prey model with functional response. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 607-614. doi: 10.3934/dcdsb.2004.4.607

[4]

Yinshu Wu, Wenzhang Huang. Global stability of the predator-prey model with a sigmoid functional response. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1159-1167. doi: 10.3934/dcdsb.2019214

[5]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[6]

Xiao He, Sining Zheng. Bifurcation analysis and dynamic behavior to a predator-prey model with Beddington-DeAngelis functional response and protection zone. Discrete & Continuous Dynamical Systems - B, 2020, 25 (12) : 4641-4657. doi: 10.3934/dcdsb.2020117

[7]

Sze-Bi Hsu, Tzy-Wei Hwang, Yang Kuang. Global dynamics of a Predator-Prey model with Hassell-Varley Type functional response. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 857-871. doi: 10.3934/dcdsb.2008.10.857

[8]

Wan-Tong Li, Yong-Hong Fan. Periodic solutions in a delayed predator-prey models with nonmonotonic functional response. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 175-185. doi: 10.3934/dcdsb.2007.8.175

[9]

Eduardo González-Olivares, Betsabé González-Yañez, Jaime Mena-Lorca, José D. Flores. Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey. Mathematical Biosciences & Engineering, 2013, 10 (2) : 345-367. doi: 10.3934/mbe.2013.10.345

[10]

Shangzhi Li, Shangjiang Guo. Persistence and extinction of a stochastic SIS epidemic model with regime switching and Lévy jumps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 5101-5134. doi: 10.3934/dcdsb.2020335

[11]

Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875

[12]

Zengji Du, Xiao Chen, Zhaosheng Feng. Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1203-1214. doi: 10.3934/dcdss.2014.7.1203

[13]

H. W. Broer, K. Saleh, V. Naudot, R. Roussarie. Dynamics of a predator-prey model with non-monotonic response function. Discrete & Continuous Dynamical Systems, 2007, 18 (2&3) : 221-251. doi: 10.3934/dcds.2007.18.221

[14]

Shanshan Chen, Junping Shi, Junjie Wei. The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Communications on Pure & Applied Analysis, 2013, 12 (1) : 481-501. doi: 10.3934/cpaa.2013.12.481

[15]

Xin Jiang, Zhikun She, Shigui Ruan. Global dynamics of a predator-prey system with density-dependent mortality and ratio-dependent functional response. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1967-1990. doi: 10.3934/dcdsb.2020041

[16]

Zhijun Liu, Weidong Wang. Persistence and periodic solutions of a nonautonomous predator-prey diffusion with Holling III functional response and continuous delay. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 653-662. doi: 10.3934/dcdsb.2004.4.653

[17]

Haiyin Li, Yasuhiro Takeuchi. Dynamics of the density dependent and nonautonomous predator-prey system with Beddington-DeAngelis functional response. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1117-1134. doi: 10.3934/dcdsb.2015.20.1117

[18]

Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 391-405. doi: 10.3934/naco.2020033

[19]

Kexin Wang. Influence of feedback controls on the global stability of a stochastic predator-prey model with Holling type Ⅱ response and infinite delays. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1699-1714. doi: 10.3934/dcdsb.2019247

[20]

Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (124)
  • HTML views (165)
  • Cited by (0)

Other articles
by authors

[Back to Top]