
-
Previous Article
Dynamics of a stochastic HIV/AIDS model with treatment under regime switching
- DCDS-B Home
- This Issue
-
Next Article
On the Cauchy-Born approximation at finite temperature for alloys
Dynamical behavior of a stochastic predator-prey model with general functional response and nonlinear jump-diffusion
College of Science, China University of Petroleum, Qingdao 266580, Shandong Province, China |
In this paper, we consider a stochastic predator-prey model with general functional response, which is perturbed by nonlinear Lévy jumps. Firstly, We show that this model has a unique global positive solution with uniform boundedness of $ \theta\in(0,1] $-th moment. Secondly, we obtain the threshold for extinction and exponential ergodicity of the one-dimensional Logistic system with nonlinear perturbations. Then based on the results of Logistic system, we introduce a new technique to study the ergodic stationary distribution for the stochastic predator-prey model with general functional response and nonlinear jump-diffusion, and derive the sufficient and almost necessary condition for extinction and ergodicity.
References:
[1] |
D. Applebaum, Lévy Process and Stochastic Calculus, Cambridge University Press, New York, 2009.
doi: 10.1017/CBO9780511809781.![]() ![]() ![]() |
[2] |
J. Bao and C. Yuan,
Comparison theorem for stochastic differential delay equations with jumps, Acta Appl. Math., 116 (2011), 119-132.
doi: 10.1007/s10440-011-9633-7. |
[3] |
J. Bao, X. Mao, G. Yin and C. Yuan,
Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal.-Throe., 74 (2011), 6601-6616.
doi: 10.1016/j.na.2011.06.043. |
[4] |
J. R. Beddington,
Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331-340.
doi: 10.2307/3866. |
[5] |
Y. Cai and X. Mao,
Stochastic prey-predator system with foraging arena scheme, Appl. Math. Model., 64 (2018), 357-371.
doi: 10.1016/j.apm.2018.07.034. |
[6] |
R. S. Cantrell and C. Cosner,
On the dynamics of predator-prey models with the Beddington-Deangelis functional response, J. Math. Anal. Appl., 257 (2001), 206-222.
doi: 10.1006/jmaa.2000.7343. |
[7] |
S. Chen, J. Wei and J. Yu,
Stationary patterns of a diffusive predator-prey model with Crowley-Martin functional response, Nonlinear Anal.-Real World Appl., 39 (2018), 33-57.
doi: 10.1016/j.nonrwa.2017.05.005. |
[8] |
Z. Cowan, M. S. Pratchett, V. Messmer and S. Ling, Known predators of crown-of-thorns starfish (Acanthaster spp.) and their role in mitigating, if not preventing, population outbreaks, Diversity-Basel, 9 (2017), 7.
doi: 10.3390/d9010007. |
[9] |
P. H. Crowley and E. K. Martin,
Functional responses and interference within and between year classes of a dragonfly population, J. North Am. Benthol. Soc., 8 (1989), 211-221.
doi: 10.2307/1467324. |
[10] |
A. Das and G. P. Samanta,
Stochastic prey-predator model with additional food for predator, Physica A, 512 (2018), 121-141.
doi: 10.1016/j.physa.2018.08.138. |
[11] |
N. H. Du, N. H. Dang and G. Yin,
Conditions for permanence and ergodicity of certain stochastic predator-prey models, J. Appl. Probab., 53 (2016), 187-202.
doi: 10.1017/jpr.2015.18. |
[12] |
N. H. Du, D. H. Dang and G. Yin,
Conditions for permanence and ergodicity of certain stochastic predator-prey models, J. Appl. Probab., 53 (2016), 187-202.
doi: 10.1017/jpr.2015.18. |
[13] |
R. Has'miniskii,
Ergodic properties of recurrent diffusion processes and stabilization of the Cauchy problem for parabolic equations, Theory Probab. Appl., 5 (1960), 179-196.
|
[14] |
C. S. Holling,
The components of predation as revealed by a study of small-mammal predation of the european pine sawfly, Can. Entomol., 91 (1959), 293-320.
doi: 10.4039/Ent91293-5. |
[15] |
C. S. Holling,
Some characteristics of simple types of predation and parasitism, Can. Entomol., 91 (1959), 385-398.
doi: 10.4039/Ent91385-7. |
[16] |
C. S. Holling,
The functional response of predators to prey density and its role in mimicry and population regulation, Memoirs of the Entomological Society of Canada, 97 (1965), 5-60.
doi: 10.4039/entm9745fv. |
[17] |
K. Ichihara and H. Kunita,
A classification of the second order degenerate elliptic operators and its probabilistic characerization, Z. Wahrsch. Verw. Gebiete, 39 (1977), 81-84.
doi: 10.1007/BF01844875. |
[18] |
S. Li, J. Wu and Y. Dong,
Effects of a degeneracy in a diffusive predato-prey model with Holling Ⅱ functional response, Nonlinear Anal.-Real World Appl., 43 (2018), 78-95.
doi: 10.1016/j.nonrwa.2018.02.003. |
[19] |
Q. Liu and D. Jiang, Influence of the fear factor on the dynamics of a stochastic predator-prey model, Appl. Math. Lett., 112 (2021), 106756.
doi: 10.1016/j.aml.2020.106756. |
[20] |
M. Liu and P. S. Mandal,
Dynamical behavior of a one-prey two-prey model with random perturbations, Commun. Nonlinear Sci. Numer. Simulat., 28 (2015), 123-137.
doi: 10.1016/j.cnsns.2015.04.010. |
[21] |
M. Liu and Y. Zhu,
Stationary distribution and ergodicity of a stochastic hybrid competition model with Levy jumps, Nonlinear Anal-Hybrid Syst., 30 (2018), 225-239.
doi: 10.1016/j.nahs.2018.05.002. |
[22] |
Q. Liu, D. Jiang, T. Hayat, A. Alsaedi and B. Ahmad, A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate, Physica A, 551 (2020), 124152.
doi: 10.1016/j.physa.2020.124152. |
[23] |
Q. Liu, D. Jiang, T. Hayat and B. Ahmad,
Stationary distribution and extinction of a stochastic predator-prey model with additional food and nonlinear perturbation, Appl. Math. Comput., 320 (2018), 226-239.
doi: 10.1016/j.amc.2017.09.030. |
[24] |
A. J. Lotka, Elements of Physical Biology, William and Wilkins, Baltimore, 1925. |
[25] |
X. Mao, G. Marion and E. Renshaw,
Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Proc. Appl., 97 (2002), 95-110.
doi: 10.1016/S0304-4149(01)00126-0. |
[26] |
X. Mao and C. Yuan, Stochastic Differential Equations With Markovian Switching, Imperial College Press, London, 2006.
doi: 10.1142/p473.![]() ![]() ![]() |
[27] |
X. Mao, G. Marion and E. Renshaw,
Environmental Brownian noise suppresses explosions in population dynamics, Stochastic Process. Appl., 97 (2002), 95-110.
doi: 10.1016/S0304-4149(01)00126-0. |
[28] |
R. M. May, Stability and Complexity in Model Ecosystems, Princeton University, 1973. |
[29] |
S. P. Meyn and R. L. Tweedie,
Stability of Markovian processes Ⅲ: Foster-Lyapunov criteria for continuous-time processes, Dav. Appl. Prob., 25 (1993), 518-548.
doi: 10.2307/1427522. |
[30] |
H. M. Safuan, H. S. Sidhu, Z. Jovanoski and I. N. Towers,
Impacts of biotic resource enrichment on a predator-prey population, Bull. Math. Biol., 75 (2013), 1798-1812.
doi: 10.1007/s11538-013-9869-7. |
[31] |
V. Volterra,
Variazioni e fluttuazioni del numero d'individui in specie d'animali conviventi, Mem. Accd. Lincei, 2 (1926), 31-113.
|
[32] |
L. Wang and D. Jiang,
Ergodic property of the chemostat: A stochastic model under regime switching and with general response function, Nonlinear Anal-Hybrid Syst., 27 (2018), 341-352.
doi: 10.1016/j.nahs.2017.10.001. |
[33] |
F. Xi,
Asymptotic properties of jump-diffusion processes with state-dependent switching, Stoch. Proc. Appl., 119 (2009), 2198-2221.
doi: 10.1016/j.spa.2008.11.001. |
[34] |
X. Yu and S. Yuan,
Asymptotic properties of a stochastic chemostat model with two distributed delays and nonlinear perturbation, Discrete Continuous Dynam. Systems - B, 25 (2020), 2373-2390.
doi: 10.3934/dcdsb.2020014. |
[35] |
X. Zhang, Y. Li and D. Jiang,
Dynamics of a stochastic Holliing type Ⅱ predator-prey model with hyperboic mortality, Nonlinear Dyn., 87 (2017), 2011-2020.
|
[36] |
X. Zhang,
The global dynamics of stochastic Holling type Ⅱ predator-prey models with non constant mortality rate, Filomat, 31 (2017), 5811-5825.
doi: 10.2298/FIL1718811Z. |
[37] |
X. Zou, Y. Zhen, L. Zhang and J. Lv, Survivability and stochastic bifurcations for a stochatic Holling type Ⅱ predator-prey model, Commun. Nonlinear Sci. Numer. Simulat., 83 (2020), 105136.
doi: 10.1016/j.cnsns.2019.105136. |
[38] |
J. Zu and M. Mimura,
The impact of Allee effect on a predator-prey system with Holling Ⅱ functional response, Appl. Math. Comput., 217 (2010), 3542-3556.
doi: 10.1016/j.amc.2010.09.029. |
show all references
References:
[1] |
D. Applebaum, Lévy Process and Stochastic Calculus, Cambridge University Press, New York, 2009.
doi: 10.1017/CBO9780511809781.![]() ![]() ![]() |
[2] |
J. Bao and C. Yuan,
Comparison theorem for stochastic differential delay equations with jumps, Acta Appl. Math., 116 (2011), 119-132.
doi: 10.1007/s10440-011-9633-7. |
[3] |
J. Bao, X. Mao, G. Yin and C. Yuan,
Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal.-Throe., 74 (2011), 6601-6616.
doi: 10.1016/j.na.2011.06.043. |
[4] |
J. R. Beddington,
Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331-340.
doi: 10.2307/3866. |
[5] |
Y. Cai and X. Mao,
Stochastic prey-predator system with foraging arena scheme, Appl. Math. Model., 64 (2018), 357-371.
doi: 10.1016/j.apm.2018.07.034. |
[6] |
R. S. Cantrell and C. Cosner,
On the dynamics of predator-prey models with the Beddington-Deangelis functional response, J. Math. Anal. Appl., 257 (2001), 206-222.
doi: 10.1006/jmaa.2000.7343. |
[7] |
S. Chen, J. Wei and J. Yu,
Stationary patterns of a diffusive predator-prey model with Crowley-Martin functional response, Nonlinear Anal.-Real World Appl., 39 (2018), 33-57.
doi: 10.1016/j.nonrwa.2017.05.005. |
[8] |
Z. Cowan, M. S. Pratchett, V. Messmer and S. Ling, Known predators of crown-of-thorns starfish (Acanthaster spp.) and their role in mitigating, if not preventing, population outbreaks, Diversity-Basel, 9 (2017), 7.
doi: 10.3390/d9010007. |
[9] |
P. H. Crowley and E. K. Martin,
Functional responses and interference within and between year classes of a dragonfly population, J. North Am. Benthol. Soc., 8 (1989), 211-221.
doi: 10.2307/1467324. |
[10] |
A. Das and G. P. Samanta,
Stochastic prey-predator model with additional food for predator, Physica A, 512 (2018), 121-141.
doi: 10.1016/j.physa.2018.08.138. |
[11] |
N. H. Du, N. H. Dang and G. Yin,
Conditions for permanence and ergodicity of certain stochastic predator-prey models, J. Appl. Probab., 53 (2016), 187-202.
doi: 10.1017/jpr.2015.18. |
[12] |
N. H. Du, D. H. Dang and G. Yin,
Conditions for permanence and ergodicity of certain stochastic predator-prey models, J. Appl. Probab., 53 (2016), 187-202.
doi: 10.1017/jpr.2015.18. |
[13] |
R. Has'miniskii,
Ergodic properties of recurrent diffusion processes and stabilization of the Cauchy problem for parabolic equations, Theory Probab. Appl., 5 (1960), 179-196.
|
[14] |
C. S. Holling,
The components of predation as revealed by a study of small-mammal predation of the european pine sawfly, Can. Entomol., 91 (1959), 293-320.
doi: 10.4039/Ent91293-5. |
[15] |
C. S. Holling,
Some characteristics of simple types of predation and parasitism, Can. Entomol., 91 (1959), 385-398.
doi: 10.4039/Ent91385-7. |
[16] |
C. S. Holling,
The functional response of predators to prey density and its role in mimicry and population regulation, Memoirs of the Entomological Society of Canada, 97 (1965), 5-60.
doi: 10.4039/entm9745fv. |
[17] |
K. Ichihara and H. Kunita,
A classification of the second order degenerate elliptic operators and its probabilistic characerization, Z. Wahrsch. Verw. Gebiete, 39 (1977), 81-84.
doi: 10.1007/BF01844875. |
[18] |
S. Li, J. Wu and Y. Dong,
Effects of a degeneracy in a diffusive predato-prey model with Holling Ⅱ functional response, Nonlinear Anal.-Real World Appl., 43 (2018), 78-95.
doi: 10.1016/j.nonrwa.2018.02.003. |
[19] |
Q. Liu and D. Jiang, Influence of the fear factor on the dynamics of a stochastic predator-prey model, Appl. Math. Lett., 112 (2021), 106756.
doi: 10.1016/j.aml.2020.106756. |
[20] |
M. Liu and P. S. Mandal,
Dynamical behavior of a one-prey two-prey model with random perturbations, Commun. Nonlinear Sci. Numer. Simulat., 28 (2015), 123-137.
doi: 10.1016/j.cnsns.2015.04.010. |
[21] |
M. Liu and Y. Zhu,
Stationary distribution and ergodicity of a stochastic hybrid competition model with Levy jumps, Nonlinear Anal-Hybrid Syst., 30 (2018), 225-239.
doi: 10.1016/j.nahs.2018.05.002. |
[22] |
Q. Liu, D. Jiang, T. Hayat, A. Alsaedi and B. Ahmad, A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate, Physica A, 551 (2020), 124152.
doi: 10.1016/j.physa.2020.124152. |
[23] |
Q. Liu, D. Jiang, T. Hayat and B. Ahmad,
Stationary distribution and extinction of a stochastic predator-prey model with additional food and nonlinear perturbation, Appl. Math. Comput., 320 (2018), 226-239.
doi: 10.1016/j.amc.2017.09.030. |
[24] |
A. J. Lotka, Elements of Physical Biology, William and Wilkins, Baltimore, 1925. |
[25] |
X. Mao, G. Marion and E. Renshaw,
Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Proc. Appl., 97 (2002), 95-110.
doi: 10.1016/S0304-4149(01)00126-0. |
[26] |
X. Mao and C. Yuan, Stochastic Differential Equations With Markovian Switching, Imperial College Press, London, 2006.
doi: 10.1142/p473.![]() ![]() ![]() |
[27] |
X. Mao, G. Marion and E. Renshaw,
Environmental Brownian noise suppresses explosions in population dynamics, Stochastic Process. Appl., 97 (2002), 95-110.
doi: 10.1016/S0304-4149(01)00126-0. |
[28] |
R. M. May, Stability and Complexity in Model Ecosystems, Princeton University, 1973. |
[29] |
S. P. Meyn and R. L. Tweedie,
Stability of Markovian processes Ⅲ: Foster-Lyapunov criteria for continuous-time processes, Dav. Appl. Prob., 25 (1993), 518-548.
doi: 10.2307/1427522. |
[30] |
H. M. Safuan, H. S. Sidhu, Z. Jovanoski and I. N. Towers,
Impacts of biotic resource enrichment on a predator-prey population, Bull. Math. Biol., 75 (2013), 1798-1812.
doi: 10.1007/s11538-013-9869-7. |
[31] |
V. Volterra,
Variazioni e fluttuazioni del numero d'individui in specie d'animali conviventi, Mem. Accd. Lincei, 2 (1926), 31-113.
|
[32] |
L. Wang and D. Jiang,
Ergodic property of the chemostat: A stochastic model under regime switching and with general response function, Nonlinear Anal-Hybrid Syst., 27 (2018), 341-352.
doi: 10.1016/j.nahs.2017.10.001. |
[33] |
F. Xi,
Asymptotic properties of jump-diffusion processes with state-dependent switching, Stoch. Proc. Appl., 119 (2009), 2198-2221.
doi: 10.1016/j.spa.2008.11.001. |
[34] |
X. Yu and S. Yuan,
Asymptotic properties of a stochastic chemostat model with two distributed delays and nonlinear perturbation, Discrete Continuous Dynam. Systems - B, 25 (2020), 2373-2390.
doi: 10.3934/dcdsb.2020014. |
[35] |
X. Zhang, Y. Li and D. Jiang,
Dynamics of a stochastic Holliing type Ⅱ predator-prey model with hyperboic mortality, Nonlinear Dyn., 87 (2017), 2011-2020.
|
[36] |
X. Zhang,
The global dynamics of stochastic Holling type Ⅱ predator-prey models with non constant mortality rate, Filomat, 31 (2017), 5811-5825.
doi: 10.2298/FIL1718811Z. |
[37] |
X. Zou, Y. Zhen, L. Zhang and J. Lv, Survivability and stochastic bifurcations for a stochatic Holling type Ⅱ predator-prey model, Commun. Nonlinear Sci. Numer. Simulat., 83 (2020), 105136.
doi: 10.1016/j.cnsns.2019.105136. |
[38] |
J. Zu and M. Mimura,
The impact of Allee effect on a predator-prey system with Holling Ⅱ functional response, Appl. Math. Comput., 217 (2010), 3542-3556.
doi: 10.1016/j.amc.2010.09.029. |


[1] |
Hongwei Yin, Xiaoyong Xiao, Xiaoqing Wen. Analysis of a Lévy-diffusion Leslie-Gower predator-prey model with nonmonotonic functional response. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2121-2151. doi: 10.3934/dcdsb.2018228 |
[2] |
Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75 |
[3] |
Haiying Jing, Zhaoyu Yang. The impact of state feedback control on a predator-prey model with functional response. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 607-614. doi: 10.3934/dcdsb.2004.4.607 |
[4] |
Yinshu Wu, Wenzhang Huang. Global stability of the predator-prey model with a sigmoid functional response. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1159-1167. doi: 10.3934/dcdsb.2019214 |
[5] |
Yanlin Zhang, Qi Cheng, Shengfu Deng. Qualitative structure of a discrete predator-prey model with nonmonotonic functional response. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022065 |
[6] |
Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129 |
[7] |
Xiao He, Sining Zheng. Bifurcation analysis and dynamic behavior to a predator-prey model with Beddington-DeAngelis functional response and protection zone. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4641-4657. doi: 10.3934/dcdsb.2020117 |
[8] |
Sze-Bi Hsu, Tzy-Wei Hwang, Yang Kuang. Global dynamics of a Predator-Prey model with Hassell-Varley Type functional response. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 857-871. doi: 10.3934/dcdsb.2008.10.857 |
[9] |
Wan-Tong Li, Yong-Hong Fan. Periodic solutions in a delayed predator-prey models with nonmonotonic functional response. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 175-185. doi: 10.3934/dcdsb.2007.8.175 |
[10] |
Eduardo González-Olivares, Betsabé González-Yañez, Jaime Mena-Lorca, José D. Flores. Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey. Mathematical Biosciences & Engineering, 2013, 10 (2) : 345-367. doi: 10.3934/mbe.2013.10.345 |
[11] |
Shangzhi Li, Shangjiang Guo. Persistence and extinction of a stochastic SIS epidemic model with regime switching and Lévy jumps. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5101-5134. doi: 10.3934/dcdsb.2020335 |
[12] |
Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875 |
[13] |
Zengji Du, Xiao Chen, Zhaosheng Feng. Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1203-1214. doi: 10.3934/dcdss.2014.7.1203 |
[14] |
Shanshan Chen, Junping Shi, Junjie Wei. The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Communications on Pure and Applied Analysis, 2013, 12 (1) : 481-501. doi: 10.3934/cpaa.2013.12.481 |
[15] |
H. W. Broer, K. Saleh, V. Naudot, R. Roussarie. Dynamics of a predator-prey model with non-monotonic response function. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 221-251. doi: 10.3934/dcds.2007.18.221 |
[16] |
Xin Jiang, Zhikun She, Shigui Ruan. Global dynamics of a predator-prey system with density-dependent mortality and ratio-dependent functional response. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1967-1990. doi: 10.3934/dcdsb.2020041 |
[17] |
Zhijun Liu, Weidong Wang. Persistence and periodic solutions of a nonautonomous predator-prey diffusion with Holling III functional response and continuous delay. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 653-662. doi: 10.3934/dcdsb.2004.4.653 |
[18] |
Haiyin Li, Yasuhiro Takeuchi. Dynamics of the density dependent and nonautonomous predator-prey system with Beddington-DeAngelis functional response. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1117-1134. doi: 10.3934/dcdsb.2015.20.1117 |
[19] |
Tongtong Chen, Jixun Chu. Hopf bifurcation for a predator-prey model with age structure and ratio-dependent response function incorporating a prey refuge. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022082 |
[20] |
Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 391-405. doi: 10.3934/naco.2020033 |
2020 Impact Factor: 1.327
Tools
Article outline
Figures and Tables
[Back to Top]