June  2022, 27(6): 3297-3311. doi: 10.3934/dcdsb.2021185

Stable transition layer induced by degeneracy of the spatial inhomogeneities in the Allen-Cahn problem

1. 

Instituto de Matemática e Computação, Universidade Federal de Itajubá, MG, Brazil

2. 

Departamento de Matemática - DM, Universidade Federal de São Carlos, SP, Brazil

Received  January 2021 Revised  May 2021 Published  June 2022 Early access  July 2021

In this article we consider a singularly perturbed Allen-Cahn problem $ u_t = \epsilon^2(a^2u_x)_x+b^2(u-u^3) $, for $ (x,t)\in (0,1)\times\mathbb{R}^+ $, supplied with no-flux boundary condition. The novelty here lies in the fact that the nonnegative spatial inhomogeneities $ a(\cdot) $ and $ b(\cdot) $ are allowed to vanish at some points in $ (0,1) $. Using the variational concept of $ \Gamma $-convergence we prove that, for $ \epsilon $ small, such degeneracy of $ a(\cdot) $ and $ b(\cdot) $ induces the existence of stable stationary solutions which develop internal transition layer as $ \epsilon\to 0 $.

Citation: Maicon Sônego, Arnaldo Simal do Nascimento. Stable transition layer induced by degeneracy of the spatial inhomogeneities in the Allen-Cahn problem. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3297-3311. doi: 10.3934/dcdsb.2021185
References:
[1]

S. AiX. Chen and S. P. Hastings, Layers and spikes in non-homogeneous bistable reaction-diffusion equations, Transactions of the American Mathematical Society, 358 (2006), 3169-3206.  doi: 10.1090/S0002-9947-06-03834-7.

[2]

F. Alabau-BoussouiraP. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability, Journal of Evolution Equations, 6 (2006), 161-204.  doi: 10.1007/s00028-006-0222-6.

[3]

S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metallurgica, 27 (1979), 1085-1095.  doi: 10.1016/0001-6160(79)90196-2.

[4]

S. B. AngenentJ. Mallet-Paret and L. A. Peletier, Stable transition layers in a semilinear boundary value problem, Journal of Differential Equations, 67 (1987), 212-242.  doi: 10.1016/0022-0396(87)90147-1.

[5] F. V. Atkinson, Discrete and Continuous Boundary Problems, Academic Press, New York, 1964. 
[6]

I. Boutaayamou, G. Fragnelli and L. Maniar, Carleman estimates for parabolic equations with interior degeneracy and Neumann boundary conditions, Journal d'Analyse Mathématique, 135 (2018), 1–35. doi: 10.1007/s11854-018-0030-2.

[7]

P. Caldiroli and R. Musina, On a variational degenerate elliptic problem, NoDEA Nonlinear Differential Equations and Applications, 7 (2000), 187-199.  doi: 10.1007/s000300050004.

[8]

M. Chipot and J. K. Hale, Stable equilibria with variable diffusion, Contemp. Math., 17, Amer. Math. Soc., Providence, RI, 1983, 209–213. doi: 10.1090/conm/017/706100.

[9]

G. Dal Maso, An Introduction to $\Gamma$-convergence, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser, 8, 1993. doi: 10.1007/978-1-4612-0327-8.

[10]

A. S. do Nascimento, Local minimizers induced by spatial inhomogeneity with inner transition layer, Jounal of Differential Equations, 133 (1997), 203-223.  doi: 10.1006/jdeq.1996.3206.

[11] L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, CRC Press, 2011.  doi: 10.1201/b10802.
[12]

G. Fragnelli, G. R. Goldstein, J. A. Goldstein, and S. Romanelli, Generators with interior degeneracy on spaces of $L^2$-type, Electron, J. Differential Equations, (2012), No. 189, 30 pp.

[13]

G. Fusco and J. K. Hale, Stable equilibria in a scalar parabolic equation with variable diffusion, SIAM Journal on Mathematical Analysis, 16 (1985), 1152-1164.  doi: 10.1137/0516085.

[14]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation, 80, Birkhäuser, Verlag, Basel, 1984. doi: 10.1007/978-1-4684-9486-0.

[15]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981.

[16]

N. I. Karachalios and N. B. Zographopoulos, On the dynamics of a degenerate parabolic equation: Global bifurcation of stationary states and convergence, Calc. Var. Partial Differential Equations, 25 (2006), 361-393.  doi: 10.1007/s00526-005-0347-4.

[17]

R. V. Kohn and P. Sternberg, Local minimizers and singular perturbations, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 69-84.  doi: 10.1017/S0308210500025026.

[18]

K. Kurata and H. Matsuzawa, Multiple stable patterns in a balanced bistable equation with heterogeneous environments, Applicable Analysis, 89 (2010), 1023-1035.  doi: 10.1080/00036811003717947.

[19]

K. Nakashima, Multi-layered stationary solutions for a spatially inhomogeneous Allen-Cahn equation, J. Differential Equations, 191 (2003), 234-276.  doi: 10.1016/S0022-0396(02)00181-X.

[20]

K. Nakashima and K. Tanaka, Clustering layers and boundary layers in spatially inhomogeneous phase transition problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 107-143.  doi: 10.1016/S0294-1449(02)00008-2.

[21]

J. Norbury and L.-C. Yeh, The location and stability of interface solutions of an inhomogeneous parabolic problem, SIAM J. Appl. Math., 61 (2000/01), 1418-1430.  doi: 10.1137/S0036139997326491.

[22]

M. Sônego, On the weakly degenerate Allen-Cahn equation, Advances in Nonlinear Analysis, 9 (2020), 361-371.  doi: 10.1515/anona-2020-0004.

[23]

P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Archive for Rational Mechanics and Analysis, 101 (1988), 209-260.  doi: 10.1007/BF00253122.

[24]

E. Yanagida, Stability of stationary distributions in a space-dependent population growth process, J. Math. Biology, 15 (1982), 37-50.  doi: 10.1007/BF00275787.

show all references

References:
[1]

S. AiX. Chen and S. P. Hastings, Layers and spikes in non-homogeneous bistable reaction-diffusion equations, Transactions of the American Mathematical Society, 358 (2006), 3169-3206.  doi: 10.1090/S0002-9947-06-03834-7.

[2]

F. Alabau-BoussouiraP. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability, Journal of Evolution Equations, 6 (2006), 161-204.  doi: 10.1007/s00028-006-0222-6.

[3]

S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metallurgica, 27 (1979), 1085-1095.  doi: 10.1016/0001-6160(79)90196-2.

[4]

S. B. AngenentJ. Mallet-Paret and L. A. Peletier, Stable transition layers in a semilinear boundary value problem, Journal of Differential Equations, 67 (1987), 212-242.  doi: 10.1016/0022-0396(87)90147-1.

[5] F. V. Atkinson, Discrete and Continuous Boundary Problems, Academic Press, New York, 1964. 
[6]

I. Boutaayamou, G. Fragnelli and L. Maniar, Carleman estimates for parabolic equations with interior degeneracy and Neumann boundary conditions, Journal d'Analyse Mathématique, 135 (2018), 1–35. doi: 10.1007/s11854-018-0030-2.

[7]

P. Caldiroli and R. Musina, On a variational degenerate elliptic problem, NoDEA Nonlinear Differential Equations and Applications, 7 (2000), 187-199.  doi: 10.1007/s000300050004.

[8]

M. Chipot and J. K. Hale, Stable equilibria with variable diffusion, Contemp. Math., 17, Amer. Math. Soc., Providence, RI, 1983, 209–213. doi: 10.1090/conm/017/706100.

[9]

G. Dal Maso, An Introduction to $\Gamma$-convergence, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser, 8, 1993. doi: 10.1007/978-1-4612-0327-8.

[10]

A. S. do Nascimento, Local minimizers induced by spatial inhomogeneity with inner transition layer, Jounal of Differential Equations, 133 (1997), 203-223.  doi: 10.1006/jdeq.1996.3206.

[11] L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, CRC Press, 2011.  doi: 10.1201/b10802.
[12]

G. Fragnelli, G. R. Goldstein, J. A. Goldstein, and S. Romanelli, Generators with interior degeneracy on spaces of $L^2$-type, Electron, J. Differential Equations, (2012), No. 189, 30 pp.

[13]

G. Fusco and J. K. Hale, Stable equilibria in a scalar parabolic equation with variable diffusion, SIAM Journal on Mathematical Analysis, 16 (1985), 1152-1164.  doi: 10.1137/0516085.

[14]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation, 80, Birkhäuser, Verlag, Basel, 1984. doi: 10.1007/978-1-4684-9486-0.

[15]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981.

[16]

N. I. Karachalios and N. B. Zographopoulos, On the dynamics of a degenerate parabolic equation: Global bifurcation of stationary states and convergence, Calc. Var. Partial Differential Equations, 25 (2006), 361-393.  doi: 10.1007/s00526-005-0347-4.

[17]

R. V. Kohn and P. Sternberg, Local minimizers and singular perturbations, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 69-84.  doi: 10.1017/S0308210500025026.

[18]

K. Kurata and H. Matsuzawa, Multiple stable patterns in a balanced bistable equation with heterogeneous environments, Applicable Analysis, 89 (2010), 1023-1035.  doi: 10.1080/00036811003717947.

[19]

K. Nakashima, Multi-layered stationary solutions for a spatially inhomogeneous Allen-Cahn equation, J. Differential Equations, 191 (2003), 234-276.  doi: 10.1016/S0022-0396(02)00181-X.

[20]

K. Nakashima and K. Tanaka, Clustering layers and boundary layers in spatially inhomogeneous phase transition problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 107-143.  doi: 10.1016/S0294-1449(02)00008-2.

[21]

J. Norbury and L.-C. Yeh, The location and stability of interface solutions of an inhomogeneous parabolic problem, SIAM J. Appl. Math., 61 (2000/01), 1418-1430.  doi: 10.1137/S0036139997326491.

[22]

M. Sônego, On the weakly degenerate Allen-Cahn equation, Advances in Nonlinear Analysis, 9 (2020), 361-371.  doi: 10.1515/anona-2020-0004.

[23]

P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Archive for Rational Mechanics and Analysis, 101 (1988), 209-260.  doi: 10.1007/BF00253122.

[24]

E. Yanagida, Stability of stationary distributions in a space-dependent population growth process, J. Math. Biology, 15 (1982), 37-50.  doi: 10.1007/BF00275787.

[1]

Paul H. Rabinowitz, Ed Stredulinsky. On a class of infinite transition solutions for an Allen-Cahn model equation. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 319-332. doi: 10.3934/dcds.2008.21.319

[2]

Zhuoran Du, Baishun Lai. Transition layers for an inhomogeneous Allen-Cahn equation in Riemannian manifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1407-1429. doi: 10.3934/dcds.2013.33.1407

[3]

Quan Wang, Dongming Yan. On the stability and transition of the Cahn-Hilliard/Allen-Cahn system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2607-2620. doi: 10.3934/dcdsb.2020024

[4]

Suting Wei, Jun Yang. Clustering phase transition layers with boundary intersection for an inhomogeneous Allen-Cahn equation. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2575-2616. doi: 10.3934/cpaa.2020113

[5]

Fang Li, Kimie Nakashima. Transition layers for a spatially inhomogeneous Allen-Cahn equation in multi-dimensional domains. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1391-1420. doi: 10.3934/dcds.2012.32.1391

[6]

Jun Yang, Xiaolin Yang. Clustered interior phase transition layers for an inhomogeneous Allen-Cahn equation in higher dimensional domains. Communications on Pure and Applied Analysis, 2013, 12 (1) : 303-340. doi: 10.3934/cpaa.2013.12.303

[7]

Yan Hu. Layer solutions for an Allen-Cahn type system driven by the fractional Laplacian. Communications on Pure and Applied Analysis, 2016, 15 (3) : 947-964. doi: 10.3934/cpaa.2016.15.947

[8]

Gianni Gilardi. On an Allen-Cahn type integrodifferential equation. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 703-709. doi: 10.3934/dcdss.2013.6.703

[9]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[10]

Takeshi Ohtsuka, Ken Shirakawa, Noriaki Yamazaki. Optimal control problem for Allen-Cahn type equation associated with total variation energy. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 159-181. doi: 10.3934/dcdss.2012.5.159

[11]

Hongmei Cheng, Rong Yuan. Multidimensional stability of disturbed pyramidal traveling fronts in the Allen-Cahn equation. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1015-1029. doi: 10.3934/dcdsb.2015.20.1015

[12]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[13]

Tatsuki Mori, Kousuke Kuto, Tohru Tsujikawa, Shoji Yotsutani. Representation formulas of solutions and bifurcation sheets to a nonlocal Allen-Cahn equation. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4907-4925. doi: 10.3934/dcds.2020205

[14]

Xinlong Feng, Huailing Song, Tao Tang, Jiang Yang. Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation. Inverse Problems and Imaging, 2013, 7 (3) : 679-695. doi: 10.3934/ipi.2013.7.679

[15]

Christos Sourdis. On the growth of the energy of entire solutions to the vector Allen-Cahn equation. Communications on Pure and Applied Analysis, 2015, 14 (2) : 577-584. doi: 10.3934/cpaa.2015.14.577

[16]

Ciprian G. Gal, Maurizio Grasselli. The non-isothermal Allen-Cahn equation with dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 1009-1040. doi: 10.3934/dcds.2008.22.1009

[17]

Eleonora Cinti. Saddle-shaped solutions for the fractional Allen-Cahn equation. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 441-463. doi: 10.3934/dcdss.2018024

[18]

Charles-Edouard Bréhier, Ludovic Goudenège. Analysis of some splitting schemes for the stochastic Allen-Cahn equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4169-4190. doi: 10.3934/dcdsb.2019077

[19]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations and Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[20]

Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations and Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (373)
  • HTML views (394)
  • Cited by (0)

Other articles
by authors

[Back to Top]