
-
Previous Article
A quasilinear parabolic-parabolic chemotaxis model with logistic source and singular sensitivity
- DCDS-B Home
- This Issue
-
Next Article
Simplification of weakly nonlinear systems and analysis of cardiac activity using them
A computational modular approach to evaluate $ {\mathrm{NO_{x}}} $ emissions and ozone production due to vehicular traffic
1. | Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, Rome, 00161, Italy |
2. | Istituto per le Applicazioni del Calcolo "M. Picone", Consiglio Nazionale delle Ricerche, Rome, 00185, Italy |
3. | Department of Mathematical Sciences, Rutgers University, Camden, NJ 08102, USA |
The societal impact of traffic is a long-standing and complex problem. We focus on the estimation of ground-level ozone production due to vehicular traffic. We propose a comprehensive computational approach combining four consecutive modules: a traffic simulation module, an emission module, a module for the main chemical reactions leading to ozone production, and a module for the diffusion of gases in the atmosphere. The traffic module is based on a second-order traffic flow model, obtained by choosing a special velocity function for the Collapsed Generalized Aw-Rascle-Zhang model. A general emission module is taken from literature, and tuned on NGSIM data together with the traffic module. Last two modules are based on reaction-diffusion partial differential equations. The system of partial differential equations describing the main chemical reactions of nitrogen oxides presents a source term given by the general emission module applied to the output of the traffic module. We use the proposed approach to analyze the ozone impact of various traffic scenarios and describe the effect of traffic light timing. The numerical tests show the negative effect of vehicles restarts on emissions, and the consequent increase in pollutants in the air, suggesting to increase the length of the green phase of traffic lights.
References:
[1] |
L. J. Alvarez-Vázquez, N. García-Chan, A. Martínez and M. E. Vázquez-Méndez,
Numerical simulation of air pollution due to traffic flow in urban networks, J. Comput. Appl. Math., 326 (2017), 44-61.
doi: 10.1016/j.cam.2017.05.017. |
[2] |
L. J. Alvarez-Vázquez, N. García-Chan, A. Martínez and M. E. Vázquez-Méndez,
Optimal control of urban air pollution related to traffic flow in road networks, Math. Control Relat. F., 8 (2018), 177-193.
doi: 10.3934/mcrf.2018008. |
[3] |
R. Atkinson,
Atmospheric chemistry of $\mathrm{VOC}s$ and $\mathrm{NO_x}$, Atmos. Environ., 34 (2000), 2063-2101.
doi: 10.1016/S1352-2310(99)00460-4. |
[4] |
R. Atkinson and W. P. L. Carter,
Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions, Chem. Rev., 84 (1984), 437-470.
doi: 10.1021/cr00063a002. |
[5] |
A. Aw and M. Rascle,
Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938.
doi: 10.1137/S0036139997332099. |
[6] |
M. Barth, F. An, T. Younglove, G. Scora, C. Levine, M. Ross and T. Wenzel, Development of a Comprehensive Modal Emissions Model: Final Report, Technical report, National Research Council, Transportation Research Board, National Cooperative Highway Research Program, NCHRP Project 25–11, 2000. |
[7] |
D. C. Carslaw, S. D. Beevers, J. E. Tate, E. J. Westmoreland and M. L. Williams,
Recent evidence concerning higher $\mathrm {NO_x}$ emissions from passenger cars and light duty vehicles, Atmos. Environ., 45 (2011), 7053-7063.
doi: 10.1016/j.atmosenv.2011.09.063. |
[8] |
D. de la Fuente, J. M. Vega, F. Viejo, I. Díaz and M. Morcillo,
Mapping air pollution effects on atmospheric degradation of cultural heritage, J. Cult. Herit., 14 (2013), 138-145.
doi: 10.1016/j.culher.2012.05.002. |
[9] |
European Environment Agency, Air Quality in Europe – 2019 Report, Technical Report, 2019. |
[10] |
S. Fan, M. Herty and B. Seibold,
Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model, Netw. Heterog. Media, 9 (2014), 239-268.
doi: 10.3934/nhm.2014.9.239. |
[11] |
S. Fan, Y. Sun, B. Piccoli, B. Seibold and D. B. Work, A collapsed generalized Aw-RascleZhang model and its model accuracy, arXiv preprint, arXiv: 1702.03624. |
[12] |
F. J. Fernández, L. J. Alvarez-Vázquez, N. García-Chan, A. Martínez and M. E. Vázquez-Méndez,
Optimal location of green zones in metropolitan areas to control the urban heat island, J. Comput. Appl. Math., 289 (2015), 412-425.
doi: 10.1016/j.cam.2014.10.023. |
[13] |
M. Garavello, K. Han and B. Piccoli, Models for Vehicular Traffic on Networks, American Institute of Mathematical Sciences, 2016. |
[14] |
E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algbraic Problem, Second edition, Springer Series in Computational Mathematics, 1996.
doi: 10.1007/978-3-642-05221-7. |
[15] |
D. J. Jacob,
Heterogeneous chemistry and tropospheric ozone, Atmos. Environ., 34 (2000), 2131-2159.
doi: 10.1016/S1352-2310(99)00462-8. |
[16] |
M. Z. Jacobson, Fundamentals of Atmospheric Modeling, Cambridge University Press, 2005.
doi: 10.1017/CBO9781139165389. |
[17] |
T. Koto,
IMEX Runge-Kutta schemes for reaction-diffusion equations, J. Comput. Appl. Math., 215 (2008), 182-195.
doi: 10.1016/j.cam.2007.04.003. |
[18] |
J. D. Lambert, Numerical Methods for Ordinary Differential Systems, John Wiley & Sons, Ltd., Chichester, 1991. |
[19] |
J.-P. Lebacque, S. Mammar and H. Haj-Salem, Generic second order traffic flow modelling, in Transportation and Traffic Theory, Elsevier, (2007), 755–776. |
[20] |
M. J. Lighthill and G. B. Whitham,
On kinematic waves II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. A, 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[21] |
T. Luspay, B. Kulcsar, I. Varga, S. K. Zegeye, B. De Schutter and M. Verhaegen, On acceleration of traffic flow, in Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems (ITSC 2010), IEEE, (2010), 741–746.
doi: 10.1109/ITSC.2010.5625204. |
[22] |
S. Manahan, Environmental Chemistry, CRC press, 2017.
doi: 10.1201/9781315160474.![]() ![]() |
[23] |
H. Omidvarborna, A. Kumar and D.-S. Kim,
$\mathrm{NO_x}$ emissions from low-temperature combustion of biodiesel made of various feedstocks and blends, Fuel Process. Technol., 140 (2015), 113-118.
doi: 10.1016/j.fuproc.2015.08.031. |
[24] |
L. I. Panis, S. Broekx and R. Liu,
Modelling instantaneous traffic emission and the influence of traffic speed limits, Sci. Total Environ., 371 (2006), 270-285.
doi: 10.1016/j.scitotenv.2006.08.017. |
[25] |
B. Piccoli, K. Han, T. L. Friesz, T. Yao and J. Tang,
Second-order models and traffic data from mobile sensors, Transp. Res. Part C: Emerg. Technol., 52 (2015), 32-56.
doi: 10.1016/j.trc.2014.12.013. |
[26] |
V. Ramanathan and Y. feng,
Air pollution, greenhouse gases and climate change: {G}lobal and regional perspectives, Atmos. Environ., 43 (2009), 37-50.
doi: 10.1016/j.atmosenv.2008.09.063. |
[27] |
P. I. Richards,
Shock waves on the highway, Oper. Res., 4 (1956), 42-51.
doi: 10.1287/opre.4.1.42. |
[28] |
M. Rößler, T. Koch, C. Janzer and M. Olzmann,
Mechanisms of the NO$_2$ formation in diesel engines, MTZ Worldw., 78 (2017), 70-75.
doi: 10.1007/s38313-017-0057-2. |
[29] |
S. Samaranayake, S. Glaser, D. Holstius, J. Monteil, K. Tracton, E. Seto and A. Bayen,
RealTime estimation of pollution emissions and dispersion from highway traffic, Comput.-Aided Civ. Inf., 29 (2014), 546-558.
doi: 10.1111/mice.12078. |
[30] |
J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley & Sons, 2016.
doi: 10.1063/1.882420. |
[31] |
R. Smit, L. Ntziachristos and P. Boulter,
Validation of road vehicle and traffic emission models – A review and meta-analysis, Atmos. Environ., 44 (2010), 2943-2953.
doi: 10.1016/j.atmosenv.2010.05.022. |
[32] |
F. Song, J. Y. Shin, R. Jusino-Atresino and Y. Gao,
Relationships among the springtime ground–level $\mathrm{NO_x}$, $\mathrm{O}_3$ and $\mathrm{NO_3}$ in the vicinity of highways in the US East Coast, Atmos. Pollut. Res., 2 (2011), 374-383.
doi: 10.5094/APR.2011.042. |
[33] |
B. Sportisse, Fundamentals in Air Pollution: From Processes to Modelling, Springer-Verlag, 2010. |
[34] |
J. M. Stockie,
The mathematics of atmospheric dispersion modeling, SIAM Rev., 53 (2011), 349-372.
doi: 10.1137/10080991X. |
[35] |
J. Tidblad, K. Kreislová, M. Faller, D. de la Fuente, T. Yates, A. Verney-Carron, T. Grøntoft, A. Gordon and U. Hans, ICP materials trends in corrosion, soiling and air pollution (1987–2014), Materials, 10 (2017).
doi: 10.3390/ma10080969. |
[36] |
Transportation Research Board, Critical Issues in Transportation 2019, Technical report, The National Academies of Sciences, Engineering, Medicine, 2019. |
[37] |
TRB Executive Committee, Special Report 307: Policy Options for Reducing Energy and
Greenhouse Gas Emissions from U.S. Transportation, Technical Report, Transportation Research Board of the National Academies, 2011. |
[38] |
US Department of Transportation and Federal Highway Administration, Next generation simulation (NGSIM), http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm. |
[39] |
T. Wang, L. Xue, P. Brimblecombe, Y. F. Lam, L. Li and L. Zhang,
Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects, Sci. Total Environ., 575 (2017), 1582-1596.
doi: 10.1016/j.scitotenv.2016.10.081. |
[40] |
R. P. Wayne, Chemistry of Atmospheres, Clarendon Press, Oxford, 1991.
![]() |
[41] |
S. K. Zegeye, B. De Schutter, J. Hellendoorn, E. A. Breunesse and A. Hegyi,
Integrated macroscopic traffic flow, emission, and fuel consumption model for control purposes, Transp. Res. Part C: Emerg. Technol., 31 (2013), 158-171.
doi: 10.1016/j.trc.2013.01.002. |
[42] |
H. M. Zhang,
A non-equilibrium traffic model devoid of gas-like behavior, Transp. Res. B, 36 (2002), 275-290.
doi: 10.1016/S0191-2615(00)00050-3. |
[43] |
K. Zhang and S. Batterman,
Air pollution and health risks due to vehicle traffic, Sci. Total Environ., 450-451 (2013), 307-316.
doi: 10.1016/j.scitotenv.2013.01.074. |
show all references
References:
[1] |
L. J. Alvarez-Vázquez, N. García-Chan, A. Martínez and M. E. Vázquez-Méndez,
Numerical simulation of air pollution due to traffic flow in urban networks, J. Comput. Appl. Math., 326 (2017), 44-61.
doi: 10.1016/j.cam.2017.05.017. |
[2] |
L. J. Alvarez-Vázquez, N. García-Chan, A. Martínez and M. E. Vázquez-Méndez,
Optimal control of urban air pollution related to traffic flow in road networks, Math. Control Relat. F., 8 (2018), 177-193.
doi: 10.3934/mcrf.2018008. |
[3] |
R. Atkinson,
Atmospheric chemistry of $\mathrm{VOC}s$ and $\mathrm{NO_x}$, Atmos. Environ., 34 (2000), 2063-2101.
doi: 10.1016/S1352-2310(99)00460-4. |
[4] |
R. Atkinson and W. P. L. Carter,
Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions, Chem. Rev., 84 (1984), 437-470.
doi: 10.1021/cr00063a002. |
[5] |
A. Aw and M. Rascle,
Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938.
doi: 10.1137/S0036139997332099. |
[6] |
M. Barth, F. An, T. Younglove, G. Scora, C. Levine, M. Ross and T. Wenzel, Development of a Comprehensive Modal Emissions Model: Final Report, Technical report, National Research Council, Transportation Research Board, National Cooperative Highway Research Program, NCHRP Project 25–11, 2000. |
[7] |
D. C. Carslaw, S. D. Beevers, J. E. Tate, E. J. Westmoreland and M. L. Williams,
Recent evidence concerning higher $\mathrm {NO_x}$ emissions from passenger cars and light duty vehicles, Atmos. Environ., 45 (2011), 7053-7063.
doi: 10.1016/j.atmosenv.2011.09.063. |
[8] |
D. de la Fuente, J. M. Vega, F. Viejo, I. Díaz and M. Morcillo,
Mapping air pollution effects on atmospheric degradation of cultural heritage, J. Cult. Herit., 14 (2013), 138-145.
doi: 10.1016/j.culher.2012.05.002. |
[9] |
European Environment Agency, Air Quality in Europe – 2019 Report, Technical Report, 2019. |
[10] |
S. Fan, M. Herty and B. Seibold,
Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model, Netw. Heterog. Media, 9 (2014), 239-268.
doi: 10.3934/nhm.2014.9.239. |
[11] |
S. Fan, Y. Sun, B. Piccoli, B. Seibold and D. B. Work, A collapsed generalized Aw-RascleZhang model and its model accuracy, arXiv preprint, arXiv: 1702.03624. |
[12] |
F. J. Fernández, L. J. Alvarez-Vázquez, N. García-Chan, A. Martínez and M. E. Vázquez-Méndez,
Optimal location of green zones in metropolitan areas to control the urban heat island, J. Comput. Appl. Math., 289 (2015), 412-425.
doi: 10.1016/j.cam.2014.10.023. |
[13] |
M. Garavello, K. Han and B. Piccoli, Models for Vehicular Traffic on Networks, American Institute of Mathematical Sciences, 2016. |
[14] |
E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algbraic Problem, Second edition, Springer Series in Computational Mathematics, 1996.
doi: 10.1007/978-3-642-05221-7. |
[15] |
D. J. Jacob,
Heterogeneous chemistry and tropospheric ozone, Atmos. Environ., 34 (2000), 2131-2159.
doi: 10.1016/S1352-2310(99)00462-8. |
[16] |
M. Z. Jacobson, Fundamentals of Atmospheric Modeling, Cambridge University Press, 2005.
doi: 10.1017/CBO9781139165389. |
[17] |
T. Koto,
IMEX Runge-Kutta schemes for reaction-diffusion equations, J. Comput. Appl. Math., 215 (2008), 182-195.
doi: 10.1016/j.cam.2007.04.003. |
[18] |
J. D. Lambert, Numerical Methods for Ordinary Differential Systems, John Wiley & Sons, Ltd., Chichester, 1991. |
[19] |
J.-P. Lebacque, S. Mammar and H. Haj-Salem, Generic second order traffic flow modelling, in Transportation and Traffic Theory, Elsevier, (2007), 755–776. |
[20] |
M. J. Lighthill and G. B. Whitham,
On kinematic waves II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. A, 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[21] |
T. Luspay, B. Kulcsar, I. Varga, S. K. Zegeye, B. De Schutter and M. Verhaegen, On acceleration of traffic flow, in Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems (ITSC 2010), IEEE, (2010), 741–746.
doi: 10.1109/ITSC.2010.5625204. |
[22] |
S. Manahan, Environmental Chemistry, CRC press, 2017.
doi: 10.1201/9781315160474.![]() ![]() |
[23] |
H. Omidvarborna, A. Kumar and D.-S. Kim,
$\mathrm{NO_x}$ emissions from low-temperature combustion of biodiesel made of various feedstocks and blends, Fuel Process. Technol., 140 (2015), 113-118.
doi: 10.1016/j.fuproc.2015.08.031. |
[24] |
L. I. Panis, S. Broekx and R. Liu,
Modelling instantaneous traffic emission and the influence of traffic speed limits, Sci. Total Environ., 371 (2006), 270-285.
doi: 10.1016/j.scitotenv.2006.08.017. |
[25] |
B. Piccoli, K. Han, T. L. Friesz, T. Yao and J. Tang,
Second-order models and traffic data from mobile sensors, Transp. Res. Part C: Emerg. Technol., 52 (2015), 32-56.
doi: 10.1016/j.trc.2014.12.013. |
[26] |
V. Ramanathan and Y. feng,
Air pollution, greenhouse gases and climate change: {G}lobal and regional perspectives, Atmos. Environ., 43 (2009), 37-50.
doi: 10.1016/j.atmosenv.2008.09.063. |
[27] |
P. I. Richards,
Shock waves on the highway, Oper. Res., 4 (1956), 42-51.
doi: 10.1287/opre.4.1.42. |
[28] |
M. Rößler, T. Koch, C. Janzer and M. Olzmann,
Mechanisms of the NO$_2$ formation in diesel engines, MTZ Worldw., 78 (2017), 70-75.
doi: 10.1007/s38313-017-0057-2. |
[29] |
S. Samaranayake, S. Glaser, D. Holstius, J. Monteil, K. Tracton, E. Seto and A. Bayen,
RealTime estimation of pollution emissions and dispersion from highway traffic, Comput.-Aided Civ. Inf., 29 (2014), 546-558.
doi: 10.1111/mice.12078. |
[30] |
J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley & Sons, 2016.
doi: 10.1063/1.882420. |
[31] |
R. Smit, L. Ntziachristos and P. Boulter,
Validation of road vehicle and traffic emission models – A review and meta-analysis, Atmos. Environ., 44 (2010), 2943-2953.
doi: 10.1016/j.atmosenv.2010.05.022. |
[32] |
F. Song, J. Y. Shin, R. Jusino-Atresino and Y. Gao,
Relationships among the springtime ground–level $\mathrm{NO_x}$, $\mathrm{O}_3$ and $\mathrm{NO_3}$ in the vicinity of highways in the US East Coast, Atmos. Pollut. Res., 2 (2011), 374-383.
doi: 10.5094/APR.2011.042. |
[33] |
B. Sportisse, Fundamentals in Air Pollution: From Processes to Modelling, Springer-Verlag, 2010. |
[34] |
J. M. Stockie,
The mathematics of atmospheric dispersion modeling, SIAM Rev., 53 (2011), 349-372.
doi: 10.1137/10080991X. |
[35] |
J. Tidblad, K. Kreislová, M. Faller, D. de la Fuente, T. Yates, A. Verney-Carron, T. Grøntoft, A. Gordon and U. Hans, ICP materials trends in corrosion, soiling and air pollution (1987–2014), Materials, 10 (2017).
doi: 10.3390/ma10080969. |
[36] |
Transportation Research Board, Critical Issues in Transportation 2019, Technical report, The National Academies of Sciences, Engineering, Medicine, 2019. |
[37] |
TRB Executive Committee, Special Report 307: Policy Options for Reducing Energy and
Greenhouse Gas Emissions from U.S. Transportation, Technical Report, Transportation Research Board of the National Academies, 2011. |
[38] |
US Department of Transportation and Federal Highway Administration, Next generation simulation (NGSIM), http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm. |
[39] |
T. Wang, L. Xue, P. Brimblecombe, Y. F. Lam, L. Li and L. Zhang,
Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects, Sci. Total Environ., 575 (2017), 1582-1596.
doi: 10.1016/j.scitotenv.2016.10.081. |
[40] |
R. P. Wayne, Chemistry of Atmospheres, Clarendon Press, Oxford, 1991.
![]() |
[41] |
S. K. Zegeye, B. De Schutter, J. Hellendoorn, E. A. Breunesse and A. Hegyi,
Integrated macroscopic traffic flow, emission, and fuel consumption model for control purposes, Transp. Res. Part C: Emerg. Technol., 31 (2013), 158-171.
doi: 10.1016/j.trc.2013.01.002. |
[42] |
H. M. Zhang,
A non-equilibrium traffic model devoid of gas-like behavior, Transp. Res. B, 36 (2002), 275-290.
doi: 10.1016/S0191-2615(00)00050-3. |
[43] |
K. Zhang and S. Batterman,
Air pollution and health risks due to vehicle traffic, Sci. Total Environ., 450-451 (2013), 307-316.
doi: 10.1016/j.scitotenv.2013.01.074. |
















Vehicle mode | ||||||
If |
6.19e-04 | 8e-05 | -4.03e-06 | -4.13e-04 | 3.80e-04 | 1.77e-04 |
If |
2.17e-04 | 0 | 0 | 0 | 0 | 0 |
Vehicle mode | ||||||
If |
6.19e-04 | 8e-05 | -4.03e-06 | -4.13e-04 | 3.80e-04 | 1.77e-04 |
If |
2.17e-04 | 0 | 0 | 0 | 0 | 0 |
Period | |||
4:01 pm - 4:14 pm | 0.1604 | 0.1666 | 0.2204 |
5:01 pm - 5:14 pm | 0.0819 | 0.0842 | 0.1625 |
5:16 pm - 5:29 pm | 0.2304 | 0.1773 | 0.0586 |
Period | |||
4:01 pm - 4:14 pm | 0.1604 | 0.1666 | 0.2204 |
5:01 pm - 5:14 pm | 0.0819 | 0.0842 | 0.1625 |
5:16 pm - 5:29 pm | 0.2304 | 0.1773 | 0.0586 |
Parameter | Value |
Parameter | Value |
2.95e+07 | 3.54e+07 | 3.91e+07 | |
1.09e+09 | 1.28e+09 | 1.43e+09 | |
1.55e+08 | 1.81e+08 | 2.02e+08 | |
7.00e+01 | 8.21e+01 | 9.13e+01 |
2.95e+07 | 3.54e+07 | 3.91e+07 | |
1.09e+09 | 1.28e+09 | 1.43e+09 | |
1.55e+08 | 1.81e+08 | 2.02e+08 | |
7.00e+01 | 8.21e+01 | 9.13e+01 |
[1] |
Bertrand Haut, Georges Bastin. A second order model of road junctions in fluid models of traffic networks. Networks and Heterogeneous Media, 2007, 2 (2) : 227-253. doi: 10.3934/nhm.2007.2.227 |
[2] |
Paola Goatin. Traffic flow models with phase transitions on road networks. Networks and Heterogeneous Media, 2009, 4 (2) : 287-301. doi: 10.3934/nhm.2009.4.287 |
[3] |
Michael Burger, Simone Göttlich, Thomas Jung. Derivation of second order traffic flow models with time delays. Networks and Heterogeneous Media, 2019, 14 (2) : 265-288. doi: 10.3934/nhm.2019011 |
[4] |
Paola Goatin, Elena Rossi. Comparative study of macroscopic traffic flow models at road junctions. Networks and Heterogeneous Media, 2020, 15 (2) : 261-279. doi: 10.3934/nhm.2020012 |
[5] |
Oliver Kolb, Simone Göttlich, Paola Goatin. Capacity drop and traffic control for a second order traffic model. Networks and Heterogeneous Media, 2017, 12 (4) : 663-681. doi: 10.3934/nhm.2017027 |
[6] |
Benjamin Seibold, Morris R. Flynn, Aslan R. Kasimov, Rodolfo R. Rosales. Constructing set-valued fundamental diagrams from Jamiton solutions in second order traffic models. Networks and Heterogeneous Media, 2013, 8 (3) : 745-772. doi: 10.3934/nhm.2013.8.745 |
[7] |
Xiaoping Wang. Ground state homoclinic solutions for a second-order Hamiltonian system. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2163-2175. doi: 10.3934/dcdss.2019139 |
[8] |
Nicolas Forcadel, Wilfredo Salazar, Mamdouh Zaydan. Homogenization of second order discrete model with local perturbation and application to traffic flow. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1437-1487. doi: 10.3934/dcds.2017060 |
[9] |
Xiaoni Chi, Zhongping Wan, Zijun Hao. Second order sufficient conditions for a class of bilevel programs with lower level second-order cone programming problem. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1111-1125. doi: 10.3934/jimo.2015.11.1111 |
[10] |
Alexandre Bayen, Rinaldo M. Colombo, Paola Goatin, Benedetto Piccoli. Traffic modeling and management: Trends and perspectives. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : i-ii. doi: 10.3934/dcdss.2014.7.3i |
[11] |
Lino J. Alvarez-Vázquez, Néstor García-Chan, Aurea Martínez, Miguel E. Vázquez-Méndez. Optimal control of urban air pollution related to traffic flow in road networks. Mathematical Control and Related Fields, 2018, 8 (1) : 177-193. doi: 10.3934/mcrf.2018008 |
[12] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[13] |
Michael Herty, Gabriella Puppo, Sebastiano Roncoroni, Giuseppe Visconti. The BGK approximation of kinetic models for traffic. Kinetic and Related Models, 2020, 13 (2) : 279-307. doi: 10.3934/krm.2020010 |
[14] |
Marco Di Francesco, Simone Fagioli, Massimiliano D. Rosini. Many particle approximation of the Aw-Rascle-Zhang second order model for vehicular traffic. Mathematical Biosciences & Engineering, 2017, 14 (1) : 127-141. doi: 10.3934/mbe.2017009 |
[15] |
Rinaldo M. Colombo, Andrea Corli. Dynamic parameters identification in traffic flow modeling. Conference Publications, 2005, 2005 (Special) : 190-199. doi: 10.3934/proc.2005.2005.190 |
[16] |
Nicola Bellomo, Abdelghani Bellouquid, Juanjo Nieto, Juan Soler. On the multiscale modeling of vehicular traffic: From kinetic to hydrodynamics. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1869-1888. doi: 10.3934/dcdsb.2014.19.1869 |
[17] |
Emiliano Cristiani, Smita Sahu. On the micro-to-macro limit for first-order traffic flow models on networks. Networks and Heterogeneous Media, 2016, 11 (3) : 395-413. doi: 10.3934/nhm.2016002 |
[18] |
Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255 |
[19] |
Johanna Ridder, Wen Shen. Traveling waves for nonlocal models of traffic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4001-4040. doi: 10.3934/dcds.2019161 |
[20] |
Tong Li. Qualitative analysis of some PDE models of traffic flow. Networks and Heterogeneous Media, 2013, 8 (3) : 773-781. doi: 10.3934/nhm.2013.8.773 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]