
-
Previous Article
Existence and continuity of global attractors for ternary mixtures of solids
- DCDS-B Home
- This Issue
- Next Article
Global dynamics and bifurcations in a SIRS epidemic model with a nonmonotone incidence rate and a piecewise-smooth treatment rate
1. | School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China |
2. | School of Mathematics and Statistics, Southwest University, Chongqing 400715, China |
In this paper, we analyze a SIRS epidemic model with a nonmonotone incidence rate and a piecewise-smooth treatment rate. The nonmonotone incidence rate describes the "psychological effect": when the number of the infected individuals (denoted by $ I $) exceeds a certain level, the incidence rate is a decreasing function with respect to $ I $. The piecewise-smooth treatment rate describes the situation where the community has limited medical resources, treatment rises linearly with $ I $ until the treatment capacity is reached, after which constant treatment (i.e., the maximum treatment) is taken.Our analysis indicates that there exists a critical value $ \widetilde{I_0} $ $ ( = \frac{b}{d}) $ for the infective level $ I_0 $ at which the health care system reaches its capacity such that:(i) When $ I_0 \geq \widetilde{I_0} $, the transmission dynamics of the model is determined by the basic reproduction number $ R_0 $: $ R_0 = 1 $ separates disease persistence from disease eradication. (ii) When $ I_0 < \widetilde{I_0} $, the model exhibits very rich dynamics and bifurcations, such as multiple endemic equilibria, periodic orbits, homoclinic orbits, Bogdanov-Takens bifurcations, and subcritical Hopf bifurcation.
References:
[1] |
M. E. Alexander and S. M. Moghadas,
Bifurcation analysis of an SIRS epidemic model with generalized incidence, SIAM J. Appl. Math., 65 (2005), 1794-1816.
doi: 10.1137/040604947. |
[2] |
R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, 1992.
![]() |
[3] |
R. Bogdanov,
Bifurcations of a limit cycle of a certain family of vector fields on the plane, (Russian) Trudy Sem. Petrovsk. Vyp., 2 (1976), 23-35.
|
[4] |
R. I. Bogdanov,
Versal deformations of a singular point of a vector field on the plane in the case of zero eigen-values, Functional Analysis and Its Applications, 9 (1975), 144-145.
doi: 10.1007/BF01075453. |
[5] |
V. Capasso, E. Crosso and G. Serio,
Mathematical models in epidemiological studies. I. Application to the epidemic of cholera verified in Bari in 1973, Annali Sclavo, 19 (1977), 193-208.
|
[6] |
V. Capasso and G. Serio,
A generalization of the Kermack-Mckendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43-61.
doi: 10.1016/0025-5564(78)90006-8. |
[7] |
J. C. Eckalbar and W. L. Eckalbar,
Dynamics of an epidemic model with quadratic treatment, Nonlinear Anal. RWA, 12 (2011), 320-332.
doi: 10.1016/j.nonrwa.2010.06.018. |
[8] |
P. Driessche and J. Watmough,
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, John A. Jacquez Memorial Volume. Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[9] |
H. W. Hethcote and P. van den Driessche,
Some epidemiological models with nonlinear incidence, J. Math. Biol., 29 (1991), 271-287.
doi: 10.1007/BF00160539. |
[10] |
Y. A. Kuzenetsov, Elements of Applied Bifurcation Theory, Springer: New York, 1995.
doi: 10.1007/978-1-4757-2421-9. |
[11] |
W. O. Kermack and A. G. McKendrick,
A contribution to the mathematical theory of epidemics, Proc. Roal Soc. Lond., 115 (1927), 700-721.
|
[12] |
W. Liu, H. W. Hethcote and S. A. Levin,
Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), 359-380.
doi: 10.1007/BF00277162. |
[13] |
W. Liu, S. A. Levin and Y. Iwasa,
Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187-204.
doi: 10.1007/BF00276956. |
[14] |
M. Lizana and J. Rivero,
Multiparametric bifurcations for a model in epidemiology, J. Math. Biol., 35 (1996), 21-36.
doi: 10.1007/s002850050040. |
[15] |
M. Lu, J. Huang, S. Ruan and P. Yu,
Bifurcation analysis of an SIRS epidemic model with a generalized nonmonotone and saturated incidence rate, J. Differential Equations, 267 (2019), 1859-1898.
doi: 10.1016/j.jde.2019.03.005. |
[16] |
M. Lu, J. Huang, S. Ruan and P. Yu, Global dynamics of a susceptible-infectious-recovered epidemic model with a generalized nonmonotone incidence rate, J. Dyn. Differ. Equ., (2020). https://doi.org/10.1007/s10884-020-09862-3
doi: 10.1007/s10884-020-09862-3. |
[17] |
X. Liu and L. Yang,
Stability analysis of an SEIQV epidemic model with saturated incidence rate, Nonlinear Anal. RWA, 13 (2012), 2671-2679.
doi: 10.1016/j.nonrwa.2012.03.010. |
[18] |
Y. Tang, D. Huang, S. Ruan and W. Zhang,
Coexistence of limit cycles and homoclinic loops in a SIRS model with a nonlinear incidence rate, SIAM J. Appl. Math., 69 (2008), 621-639.
doi: 10.1137/070700966. |
[19] |
F. Takens,
Forced oscillations and bifurcation, Global Analysis of Dynamical Systems, 3 (2001), 1-61.
|
[20] |
W. Wang,
Backward bifurcation of an epidemic model with treatment, Math. Biosci., 201 (2006), 58-71.
doi: 10.1016/j.mbs.2005.12.022. |
[21] |
W. Wang and S. Ruan,
Bifurcation in an epidemic model with constant removal rate of the infectives, J. Math. Anal. Appl., 291 (2004), 775-793.
doi: 10.1016/j.jmaa.2003.11.043. |
[22] |
D. Xiao and S. Ruan,
Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419-429.
doi: 10.1016/j.mbs.2006.09.025. |
[23] |
D. Xiao and Y. Zhou,
Qualitative analysis of an epidemic model, Can. Appl. Math. Q., 14 (2006), 469-492.
|
[24] |
Q. Yang, D. Jiang, N. Shi and C. Ji,
The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence, J. Math. Anal. Appl., 388 (2012), 248-271.
doi: 10.1016/j.jmaa.2011.11.072. |
[25] |
Y. Yao,
Bifurcations of a Leslie-Gower prey-predator system with ratio-dependent Holling IV functional response and prey harvesting, Math. Meth. Appl. Sci., 43 (2020), 2137-2170.
doi: 10.1002/mma.5944. |
[26] |
Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Translated from the Chinese by Anthony Wing Kwok Leung. Translations of Mathematical Monographs, 101. American Mathematical Society, Providence, RI, 1992. |
[27] |
X. Zhang and X. Liu,
Backward bifurcation of an epidemic model with saturated treatment function, J. Math. Anal. Appl., 348 (2008), 433-443.
doi: 10.1016/j.jmaa.2008.07.042. |
[28] |
T. Zhou, W. Zhang and Q. Lu,
Bifurcation analysis of an SIS epidemic model with saturated incidence rate and saturated treatment function, Applied Mathematics and Computation, 226 (2014), 288-305.
doi: 10.1016/j.amc.2013.10.020. |
show all references
References:
[1] |
M. E. Alexander and S. M. Moghadas,
Bifurcation analysis of an SIRS epidemic model with generalized incidence, SIAM J. Appl. Math., 65 (2005), 1794-1816.
doi: 10.1137/040604947. |
[2] |
R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, 1992.
![]() |
[3] |
R. Bogdanov,
Bifurcations of a limit cycle of a certain family of vector fields on the plane, (Russian) Trudy Sem. Petrovsk. Vyp., 2 (1976), 23-35.
|
[4] |
R. I. Bogdanov,
Versal deformations of a singular point of a vector field on the plane in the case of zero eigen-values, Functional Analysis and Its Applications, 9 (1975), 144-145.
doi: 10.1007/BF01075453. |
[5] |
V. Capasso, E. Crosso and G. Serio,
Mathematical models in epidemiological studies. I. Application to the epidemic of cholera verified in Bari in 1973, Annali Sclavo, 19 (1977), 193-208.
|
[6] |
V. Capasso and G. Serio,
A generalization of the Kermack-Mckendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43-61.
doi: 10.1016/0025-5564(78)90006-8. |
[7] |
J. C. Eckalbar and W. L. Eckalbar,
Dynamics of an epidemic model with quadratic treatment, Nonlinear Anal. RWA, 12 (2011), 320-332.
doi: 10.1016/j.nonrwa.2010.06.018. |
[8] |
P. Driessche and J. Watmough,
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, John A. Jacquez Memorial Volume. Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[9] |
H. W. Hethcote and P. van den Driessche,
Some epidemiological models with nonlinear incidence, J. Math. Biol., 29 (1991), 271-287.
doi: 10.1007/BF00160539. |
[10] |
Y. A. Kuzenetsov, Elements of Applied Bifurcation Theory, Springer: New York, 1995.
doi: 10.1007/978-1-4757-2421-9. |
[11] |
W. O. Kermack and A. G. McKendrick,
A contribution to the mathematical theory of epidemics, Proc. Roal Soc. Lond., 115 (1927), 700-721.
|
[12] |
W. Liu, H. W. Hethcote and S. A. Levin,
Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), 359-380.
doi: 10.1007/BF00277162. |
[13] |
W. Liu, S. A. Levin and Y. Iwasa,
Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187-204.
doi: 10.1007/BF00276956. |
[14] |
M. Lizana and J. Rivero,
Multiparametric bifurcations for a model in epidemiology, J. Math. Biol., 35 (1996), 21-36.
doi: 10.1007/s002850050040. |
[15] |
M. Lu, J. Huang, S. Ruan and P. Yu,
Bifurcation analysis of an SIRS epidemic model with a generalized nonmonotone and saturated incidence rate, J. Differential Equations, 267 (2019), 1859-1898.
doi: 10.1016/j.jde.2019.03.005. |
[16] |
M. Lu, J. Huang, S. Ruan and P. Yu, Global dynamics of a susceptible-infectious-recovered epidemic model with a generalized nonmonotone incidence rate, J. Dyn. Differ. Equ., (2020). https://doi.org/10.1007/s10884-020-09862-3
doi: 10.1007/s10884-020-09862-3. |
[17] |
X. Liu and L. Yang,
Stability analysis of an SEIQV epidemic model with saturated incidence rate, Nonlinear Anal. RWA, 13 (2012), 2671-2679.
doi: 10.1016/j.nonrwa.2012.03.010. |
[18] |
Y. Tang, D. Huang, S. Ruan and W. Zhang,
Coexistence of limit cycles and homoclinic loops in a SIRS model with a nonlinear incidence rate, SIAM J. Appl. Math., 69 (2008), 621-639.
doi: 10.1137/070700966. |
[19] |
F. Takens,
Forced oscillations and bifurcation, Global Analysis of Dynamical Systems, 3 (2001), 1-61.
|
[20] |
W. Wang,
Backward bifurcation of an epidemic model with treatment, Math. Biosci., 201 (2006), 58-71.
doi: 10.1016/j.mbs.2005.12.022. |
[21] |
W. Wang and S. Ruan,
Bifurcation in an epidemic model with constant removal rate of the infectives, J. Math. Anal. Appl., 291 (2004), 775-793.
doi: 10.1016/j.jmaa.2003.11.043. |
[22] |
D. Xiao and S. Ruan,
Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419-429.
doi: 10.1016/j.mbs.2006.09.025. |
[23] |
D. Xiao and Y. Zhou,
Qualitative analysis of an epidemic model, Can. Appl. Math. Q., 14 (2006), 469-492.
|
[24] |
Q. Yang, D. Jiang, N. Shi and C. Ji,
The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence, J. Math. Anal. Appl., 388 (2012), 248-271.
doi: 10.1016/j.jmaa.2011.11.072. |
[25] |
Y. Yao,
Bifurcations of a Leslie-Gower prey-predator system with ratio-dependent Holling IV functional response and prey harvesting, Math. Meth. Appl. Sci., 43 (2020), 2137-2170.
doi: 10.1002/mma.5944. |
[26] |
Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Translated from the Chinese by Anthony Wing Kwok Leung. Translations of Mathematical Monographs, 101. American Mathematical Society, Providence, RI, 1992. |
[27] |
X. Zhang and X. Liu,
Backward bifurcation of an epidemic model with saturated treatment function, J. Math. Anal. Appl., 348 (2008), 433-443.
doi: 10.1016/j.jmaa.2008.07.042. |
[28] |
T. Zhou, W. Zhang and Q. Lu,
Bifurcation analysis of an SIS epidemic model with saturated incidence rate and saturated treatment function, Applied Mathematics and Computation, 226 (2014), 288-305.
doi: 10.1016/j.amc.2013.10.020. |









[1] |
Min Lu, Chuang Xiang, Jicai Huang. Bogdanov-Takens bifurcation in a SIRS epidemic model with a generalized nonmonotone incidence rate. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3125-3138. doi: 10.3934/dcdss.2020115 |
[2] |
Yoichi Enatsu, Yukihiko Nakata. Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate. Mathematical Biosciences & Engineering, 2014, 11 (4) : 785-805. doi: 10.3934/mbe.2014.11.785 |
[3] |
Bing Zeng, Shengfu Deng, Pei Yu. Bogdanov-Takens bifurcation in predator-prey systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3253-3269. doi: 10.3934/dcdss.2020130 |
[4] |
Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041 |
[5] |
Xiaomei Feng, Zhidong Teng, Kai Wang, Fengqin Zhang. Backward bifurcation and global stability in an epidemic model with treatment and vaccination. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 999-1025. doi: 10.3934/dcdsb.2014.19.999 |
[6] |
Zhixing Hu, Ping Bi, Wanbiao Ma, Shigui Ruan. Bifurcations of an SIRS epidemic model with nonlinear incidence rate. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 93-112. doi: 10.3934/dcdsb.2011.15.93 |
[7] |
Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121 |
[8] |
Xun Cao, Xianyong Chen, Weihua Jiang. Bogdanov-Takens bifurcation with $ Z_2 $ symmetry and spatiotemporal dynamics in diffusive Rosenzweig-MacArthur model involving nonlocal prey competition. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022031 |
[9] |
Hebai Chen, Xingwu Chen, Jianhua Xie. Global phase portrait of a degenerate Bogdanov-Takens system with symmetry. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1273-1293. doi: 10.3934/dcdsb.2017062 |
[10] |
Hebai Chen, Xingwu Chen. Global phase portraits of a degenerate Bogdanov-Takens system with symmetry (Ⅱ). Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4141-4170. doi: 10.3934/dcdsb.2018130 |
[11] |
Yoshiaki Muroya, Toshikazu Kuniya, Yoichi Enatsu. Global stability of a delayed multi-group SIRS epidemic model with nonlinear incidence rates and relapse of infection. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3057-3091. doi: 10.3934/dcdsb.2015.20.3057 |
[12] |
Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325 |
[13] |
Bing Zeng, Pei Yu. A hierarchical parametric analysis on Hopf bifurcation of an epidemic model. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022069 |
[14] |
Yukihiko Nakata, Yoichi Enatsu, Yoshiaki Muroya. On the global stability of an SIRS epidemic model with distributed delays. Conference Publications, 2011, 2011 (Special) : 1119-1128. doi: 10.3934/proc.2011.2011.1119 |
[15] |
Shouying Huang, Jifa Jiang. Global stability of a network-based SIS epidemic model with a general nonlinear incidence rate. Mathematical Biosciences & Engineering, 2016, 13 (4) : 723-739. doi: 10.3934/mbe.2016016 |
[16] |
Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643 |
[17] |
Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051 |
[18] |
C. Connell McCluskey. Global stability of an $SIR$ epidemic model with delay and general nonlinear incidence. Mathematical Biosciences & Engineering, 2010, 7 (4) : 837-850. doi: 10.3934/mbe.2010.7.837 |
[19] |
Yu Yang, Lan Zou, Tonghua Zhang, Yancong Xu. Dynamical analysis of a diffusive SIRS model with general incidence rate. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2433-2451. doi: 10.3934/dcdsb.2020017 |
[20] |
Yanan Zhao, Yuguo Lin, Daqing Jiang, Xuerong Mao, Yong Li. Stationary distribution of stochastic SIRS epidemic model with standard incidence. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2363-2378. doi: 10.3934/dcdsb.2016051 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]