doi: 10.3934/dcdsb.2021195
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Global dynamics and bifurcations in a SIRS epidemic model with a nonmonotone incidence rate and a piecewise-smooth treatment rate

1. 

School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China

2. 

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

* Corresponding author: Jicai Huang

Received  December 2020 Revised  April 2021 Early access August 2021

Fund Project: Research of JH and QP was partially supported by NSFC (No. 11871235) and the Fundamental Research Funds for the Central Universities (CCNU19TS030). Research of QH is partially supported by NSFC (No. 11871060) and the Fundamental Research Funds for the Central university (XDJK2018B031)

In this paper, we analyze a SIRS epidemic model with a nonmonotone incidence rate and a piecewise-smooth treatment rate. The nonmonotone incidence rate describes the "psychological effect": when the number of the infected individuals (denoted by $ I $) exceeds a certain level, the incidence rate is a decreasing function with respect to $ I $. The piecewise-smooth treatment rate describes the situation where the community has limited medical resources, treatment rises linearly with $ I $ until the treatment capacity is reached, after which constant treatment (i.e., the maximum treatment) is taken.Our analysis indicates that there exists a critical value $ \widetilde{I_0} $ $ ( = \frac{b}{d}) $ for the infective level $ I_0 $ at which the health care system reaches its capacity such that:(i) When $ I_0 \geq \widetilde{I_0} $, the transmission dynamics of the model is determined by the basic reproduction number $ R_0 $: $ R_0 = 1 $ separates disease persistence from disease eradication. (ii) When $ I_0 < \widetilde{I_0} $, the model exhibits very rich dynamics and bifurcations, such as multiple endemic equilibria, periodic orbits, homoclinic orbits, Bogdanov-Takens bifurcations, and subcritical Hopf bifurcation.

Citation: Qin Pan, Jicai Huang, Qihua Huang. Global dynamics and bifurcations in a SIRS epidemic model with a nonmonotone incidence rate and a piecewise-smooth treatment rate. Discrete and Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021195
References:
[1]

M. E. Alexander and S. M. Moghadas, Bifurcation analysis of an SIRS epidemic model with generalized incidence, SIAM J. Appl. Math., 65 (2005), 1794-1816.  doi: 10.1137/040604947.

[2] R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, 1992. 
[3]

R. Bogdanov, Bifurcations of a limit cycle of a certain family of vector fields on the plane, (Russian) Trudy Sem. Petrovsk. Vyp., 2 (1976), 23-35. 

[4]

R. I. Bogdanov, Versal deformations of a singular point of a vector field on the plane in the case of zero eigen-values, Functional Analysis and Its Applications, 9 (1975), 144-145.  doi: 10.1007/BF01075453.

[5]

V. CapassoE. Crosso and G. Serio, Mathematical models in epidemiological studies. I. Application to the epidemic of cholera verified in Bari in 1973, Annali Sclavo, 19 (1977), 193-208. 

[6]

V. Capasso and G. Serio, A generalization of the Kermack-Mckendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43-61.  doi: 10.1016/0025-5564(78)90006-8.

[7]

J. C. Eckalbar and W. L. Eckalbar, Dynamics of an epidemic model with quadratic treatment, Nonlinear Anal. RWA, 12 (2011), 320-332.  doi: 10.1016/j.nonrwa.2010.06.018.

[8]

P. Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, John A. Jacquez Memorial Volume. Math. Biosci., 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6.

[9]

H. W. Hethcote and P. van den Driessche, Some epidemiological models with nonlinear incidence, J. Math. Biol., 29 (1991), 271-287.  doi: 10.1007/BF00160539.

[10]

Y. A. Kuzenetsov, Elements of Applied Bifurcation Theory, Springer: New York, 1995. doi: 10.1007/978-1-4757-2421-9.

[11]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Roal Soc. Lond., 115 (1927), 700-721. 

[12]

W. LiuH. W. Hethcote and S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), 359-380.  doi: 10.1007/BF00277162.

[13]

W. LiuS. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187-204.  doi: 10.1007/BF00276956.

[14]

M. Lizana and J. Rivero, Multiparametric bifurcations for a model in epidemiology, J. Math. Biol., 35 (1996), 21-36.  doi: 10.1007/s002850050040.

[15]

M. LuJ. HuangS. Ruan and P. Yu, Bifurcation analysis of an SIRS epidemic model with a generalized nonmonotone and saturated incidence rate, J. Differential Equations, 267 (2019), 1859-1898.  doi: 10.1016/j.jde.2019.03.005.

[16]

M. Lu, J. Huang, S. Ruan and P. Yu, Global dynamics of a susceptible-infectious-recovered epidemic model with a generalized nonmonotone incidence rate, J. Dyn. Differ. Equ., (2020). https://doi.org/10.1007/s10884-020-09862-3 doi: 10.1007/s10884-020-09862-3.

[17]

X. Liu and L. Yang, Stability analysis of an SEIQV epidemic model with saturated incidence rate, Nonlinear Anal. RWA, 13 (2012), 2671-2679.  doi: 10.1016/j.nonrwa.2012.03.010.

[18]

Y. TangD. HuangS. Ruan and W. Zhang, Coexistence of limit cycles and homoclinic loops in a SIRS model with a nonlinear incidence rate, SIAM J. Appl. Math., 69 (2008), 621-639.  doi: 10.1137/070700966.

[19]

F. Takens, Forced oscillations and bifurcation, Global Analysis of Dynamical Systems, 3 (2001), 1-61. 

[20]

W. Wang, Backward bifurcation of an epidemic model with treatment, Math. Biosci., 201 (2006), 58-71.  doi: 10.1016/j.mbs.2005.12.022.

[21]

W. Wang and S. Ruan, Bifurcation in an epidemic model with constant removal rate of the infectives, J. Math. Anal. Appl., 291 (2004), 775-793.  doi: 10.1016/j.jmaa.2003.11.043.

[22]

D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419-429.  doi: 10.1016/j.mbs.2006.09.025.

[23]

D. Xiao and Y. Zhou, Qualitative analysis of an epidemic model, Can. Appl. Math. Q., 14 (2006), 469-492. 

[24]

Q. YangD. JiangN. Shi and C. Ji, The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence, J. Math. Anal. Appl., 388 (2012), 248-271.  doi: 10.1016/j.jmaa.2011.11.072.

[25]

Y. Yao, Bifurcations of a Leslie-Gower prey-predator system with ratio-dependent Holling IV functional response and prey harvesting, Math. Meth. Appl. Sci., 43 (2020), 2137-2170.  doi: 10.1002/mma.5944.

[26]

Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Translated from the Chinese by Anthony Wing Kwok Leung. Translations of Mathematical Monographs, 101. American Mathematical Society, Providence, RI, 1992.

[27]

X. Zhang and X. Liu, Backward bifurcation of an epidemic model with saturated treatment function, J. Math. Anal. Appl., 348 (2008), 433-443.  doi: 10.1016/j.jmaa.2008.07.042.

[28]

T. ZhouW. Zhang and Q. Lu, Bifurcation analysis of an SIS epidemic model with saturated incidence rate and saturated treatment function, Applied Mathematics and Computation, 226 (2014), 288-305.  doi: 10.1016/j.amc.2013.10.020.

show all references

References:
[1]

M. E. Alexander and S. M. Moghadas, Bifurcation analysis of an SIRS epidemic model with generalized incidence, SIAM J. Appl. Math., 65 (2005), 1794-1816.  doi: 10.1137/040604947.

[2] R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, 1992. 
[3]

R. Bogdanov, Bifurcations of a limit cycle of a certain family of vector fields on the plane, (Russian) Trudy Sem. Petrovsk. Vyp., 2 (1976), 23-35. 

[4]

R. I. Bogdanov, Versal deformations of a singular point of a vector field on the plane in the case of zero eigen-values, Functional Analysis and Its Applications, 9 (1975), 144-145.  doi: 10.1007/BF01075453.

[5]

V. CapassoE. Crosso and G. Serio, Mathematical models in epidemiological studies. I. Application to the epidemic of cholera verified in Bari in 1973, Annali Sclavo, 19 (1977), 193-208. 

[6]

V. Capasso and G. Serio, A generalization of the Kermack-Mckendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43-61.  doi: 10.1016/0025-5564(78)90006-8.

[7]

J. C. Eckalbar and W. L. Eckalbar, Dynamics of an epidemic model with quadratic treatment, Nonlinear Anal. RWA, 12 (2011), 320-332.  doi: 10.1016/j.nonrwa.2010.06.018.

[8]

P. Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, John A. Jacquez Memorial Volume. Math. Biosci., 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6.

[9]

H. W. Hethcote and P. van den Driessche, Some epidemiological models with nonlinear incidence, J. Math. Biol., 29 (1991), 271-287.  doi: 10.1007/BF00160539.

[10]

Y. A. Kuzenetsov, Elements of Applied Bifurcation Theory, Springer: New York, 1995. doi: 10.1007/978-1-4757-2421-9.

[11]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Roal Soc. Lond., 115 (1927), 700-721. 

[12]

W. LiuH. W. Hethcote and S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), 359-380.  doi: 10.1007/BF00277162.

[13]

W. LiuS. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187-204.  doi: 10.1007/BF00276956.

[14]

M. Lizana and J. Rivero, Multiparametric bifurcations for a model in epidemiology, J. Math. Biol., 35 (1996), 21-36.  doi: 10.1007/s002850050040.

[15]

M. LuJ. HuangS. Ruan and P. Yu, Bifurcation analysis of an SIRS epidemic model with a generalized nonmonotone and saturated incidence rate, J. Differential Equations, 267 (2019), 1859-1898.  doi: 10.1016/j.jde.2019.03.005.

[16]

M. Lu, J. Huang, S. Ruan and P. Yu, Global dynamics of a susceptible-infectious-recovered epidemic model with a generalized nonmonotone incidence rate, J. Dyn. Differ. Equ., (2020). https://doi.org/10.1007/s10884-020-09862-3 doi: 10.1007/s10884-020-09862-3.

[17]

X. Liu and L. Yang, Stability analysis of an SEIQV epidemic model with saturated incidence rate, Nonlinear Anal. RWA, 13 (2012), 2671-2679.  doi: 10.1016/j.nonrwa.2012.03.010.

[18]

Y. TangD. HuangS. Ruan and W. Zhang, Coexistence of limit cycles and homoclinic loops in a SIRS model with a nonlinear incidence rate, SIAM J. Appl. Math., 69 (2008), 621-639.  doi: 10.1137/070700966.

[19]

F. Takens, Forced oscillations and bifurcation, Global Analysis of Dynamical Systems, 3 (2001), 1-61. 

[20]

W. Wang, Backward bifurcation of an epidemic model with treatment, Math. Biosci., 201 (2006), 58-71.  doi: 10.1016/j.mbs.2005.12.022.

[21]

W. Wang and S. Ruan, Bifurcation in an epidemic model with constant removal rate of the infectives, J. Math. Anal. Appl., 291 (2004), 775-793.  doi: 10.1016/j.jmaa.2003.11.043.

[22]

D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419-429.  doi: 10.1016/j.mbs.2006.09.025.

[23]

D. Xiao and Y. Zhou, Qualitative analysis of an epidemic model, Can. Appl. Math. Q., 14 (2006), 469-492. 

[24]

Q. YangD. JiangN. Shi and C. Ji, The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence, J. Math. Anal. Appl., 388 (2012), 248-271.  doi: 10.1016/j.jmaa.2011.11.072.

[25]

Y. Yao, Bifurcations of a Leslie-Gower prey-predator system with ratio-dependent Holling IV functional response and prey harvesting, Math. Meth. Appl. Sci., 43 (2020), 2137-2170.  doi: 10.1002/mma.5944.

[26]

Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Translated from the Chinese by Anthony Wing Kwok Leung. Translations of Mathematical Monographs, 101. American Mathematical Society, Providence, RI, 1992.

[27]

X. Zhang and X. Liu, Backward bifurcation of an epidemic model with saturated treatment function, J. Math. Anal. Appl., 348 (2008), 433-443.  doi: 10.1016/j.jmaa.2008.07.042.

[28]

T. ZhouW. Zhang and Q. Lu, Bifurcation analysis of an SIS epidemic model with saturated incidence rate and saturated treatment function, Applied Mathematics and Computation, 226 (2014), 288-305.  doi: 10.1016/j.amc.2013.10.020.

Figure 1.  The positive real roots of $ f(x) = 0 $ when $ m+n-A<0 $: (a) no positive root. (b) a positive double root $ x_* $ (i.e., $ \overline{x}_2 $). (c) two different positive single roots $ x_1 $, $ x_2 $
Figure 2.  A unique positive equilibrium $ E_{*} $ of system (9): (a) a saddle-node with a stable parabolic sector for $ A = \frac{219}{32},\, n = \frac{9}{10},\, m = \frac{20}{8},\,p = \frac{1}{4},\,q = \frac{7}{4} $; (b) a saddle-node with an unstable parabolic sector for $ A = \frac{737}{96},\, n = \frac{16}{15},\, m = \frac{20}{8},\,p = \frac{1}{4},\,q = \frac{19}{8} $; (c) a cusp of codimension two for $ A = \frac{235}{32},\, n = 1,\, m = \frac{20}{8},\,p = \frac{1}{4},\,q = \frac{17}{8} $
Figure 3.  Bogdanov-Takens bifurcation diagram and corresponding phase portraits of system (21) for $ n = 1,\, m = \frac{20}{8},\,p = \frac{1}{4} $. (a) Bifurcation diagram; (b) No positive equilibria when $ (q,A) = (2.3,7.429) $ lies in the region $I $; (c) An unstable focus $ E_2 $ and a saddle $ E_1 $ occur when $ (q,A) = (2.3,7.431) $ lies in the region $ II $; (d) An unstable limit cycle occurs when $ (q,A) = (2.3,7.4315) $ lies in the region $ III $; (e) An unstable homoclinic loop occurs when $ (q,A) = (2.3,7.4320743) $ lies on the curve $ \mathcal{H L} $; (f) A stable focus $ E_2 $ when $ (q,A) = (2.3,7.433) $ lies in the region $ IV $
Figure 4.  An unstable limit cycle bifurcates from $ E_2(x_2,y_2) $ for system (9)
Figure 5.  The phase portraits of system (5) when $ A\leq x_0 $. (a) The disease-free equilibrium $ E_0 $ is globally asymptotically stable when $ R_0\leq1 $; (b) The endemic equilibrium $ E^*(x^*,y^*) $ is globally asymptotically stable when $ R_0>1 $
Figure 6.  The phase portraits of system (5) when $ R_0\geq R_0^* $. (a) Two positive equilibria $ E^*(x^*,y^*) $ and $ E_2 $ when $ R_0 = R_0^* $. (b) A unique positive equilibrium $ E^*(x^*,y^*) $ when $ R_0 = R_0^* $; (c) A unique positive equilibrium $ E_2 $ when $ R_0> R_0^* $
Figure 7.  Phase portraits for Bogdanov-Takens bifurcation in system (5) when $ 0<R_0<1 $, where $ n = 1,\, m = \frac{20}{8},\,p = \frac{1}{4},\,x_0 = 0.2 $. (a) No positive equilibria when $ (q,A) = (2.3,7.429) $; (b) Two positive equilibria occur in the region $ \{(x,y)|x>x_0 = 0.2,\, y>0\} $ when $ (q,A) = (2.3,7.431) $: $ E_1 $ is always a saddle, $ E_2 $ is an unstable focus; (c) An unstable limit cycle occurs when $ (q,A) = (2.3,7.4315) $; (d) An unstable homoclinic loop occurs when $ (q,A) = (2.3,7.4320743) $; (e) $ E_2 $ becomes as a stable focus when $ (q,A) = (2.3,7.433) $
Figure 8.  $ (a)-(d) $ are the local enlarged view of $ (b)-(e) $ in Figure 7, respectively
Figure 9.  Phase portraits for Bogdanov-Takens bifurcation in system (5) when $ 1<R_0<R_0^* $, where $ n = 1,\, m = \frac{20}{8},\,p = \frac{1}{4},\,x_0 = 0.4 $. (a) $ E^* $ always exists in the region $ \{(x,y)|x<x_0 = 0.4,\, y>0\} $, and no positive equilibria lie in the region $ \{(x,y)|x>x_0 = 0.4,\, y>0\} $ when $ (q,A) = (2.3,7.429) $; (b) Two positive equilibria occur in the region $ \{(x,y)|x>x_0 = 0.4,\, y>0\} $ when $ (q,A) = (2.3,7.431) $: $ E_1 $ is always a saddle, $ E_2 $ is an unstable focus; (c) An unstable limit cycle occurs when $ (q,A) = (2.3,7.4315) $; (d) An unstable homoclinic loop occurs when $ (q,A) = (2.3,7.4320743) $; (e) $ E_2 $ becomes as a stable focus when $ (q,A) = (2.3,7.433) $
Figure 10.  $ (a)-(d) $ are the local enlarged view of $ (b)-(e) $ in Figure 9, respectively
Figure 11.  An unstable limit cycle bifurcates from $ E_2(x_2,y_2) $ in system (5). (a) $ 0<R_0<1 $. (b) $ 1<R_0<R_0^* $
[1]

Min Lu, Chuang Xiang, Jicai Huang. Bogdanov-Takens bifurcation in a SIRS epidemic model with a generalized nonmonotone incidence rate. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3125-3138. doi: 10.3934/dcdss.2020115

[2]

Yoichi Enatsu, Yukihiko Nakata. Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate. Mathematical Biosciences & Engineering, 2014, 11 (4) : 785-805. doi: 10.3934/mbe.2014.11.785

[3]

Bing Zeng, Shengfu Deng, Pei Yu. Bogdanov-Takens bifurcation in predator-prey systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3253-3269. doi: 10.3934/dcdss.2020130

[4]

Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041

[5]

Xiaomei Feng, Zhidong Teng, Kai Wang, Fengqin Zhang. Backward bifurcation and global stability in an epidemic model with treatment and vaccination. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 999-1025. doi: 10.3934/dcdsb.2014.19.999

[6]

Zhixing Hu, Ping Bi, Wanbiao Ma, Shigui Ruan. Bifurcations of an SIRS epidemic model with nonlinear incidence rate. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 93-112. doi: 10.3934/dcdsb.2011.15.93

[7]

Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121

[8]

Xun Cao, Xianyong Chen, Weihua Jiang. Bogdanov-Takens bifurcation with $ Z_2 $ symmetry and spatiotemporal dynamics in diffusive Rosenzweig-MacArthur model involving nonlocal prey competition. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022031

[9]

Hebai Chen, Xingwu Chen, Jianhua Xie. Global phase portrait of a degenerate Bogdanov-Takens system with symmetry. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1273-1293. doi: 10.3934/dcdsb.2017062

[10]

Hebai Chen, Xingwu Chen. Global phase portraits of a degenerate Bogdanov-Takens system with symmetry (Ⅱ). Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4141-4170. doi: 10.3934/dcdsb.2018130

[11]

Yoshiaki Muroya, Toshikazu Kuniya, Yoichi Enatsu. Global stability of a delayed multi-group SIRS epidemic model with nonlinear incidence rates and relapse of infection. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3057-3091. doi: 10.3934/dcdsb.2015.20.3057

[12]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[13]

Bing Zeng, Pei Yu. A hierarchical parametric analysis on Hopf bifurcation of an epidemic model. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022069

[14]

Yukihiko Nakata, Yoichi Enatsu, Yoshiaki Muroya. On the global stability of an SIRS epidemic model with distributed delays. Conference Publications, 2011, 2011 (Special) : 1119-1128. doi: 10.3934/proc.2011.2011.1119

[15]

Shouying Huang, Jifa Jiang. Global stability of a network-based SIS epidemic model with a general nonlinear incidence rate. Mathematical Biosciences & Engineering, 2016, 13 (4) : 723-739. doi: 10.3934/mbe.2016016

[16]

Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643

[17]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

[18]

C. Connell McCluskey. Global stability of an $SIR$ epidemic model with delay and general nonlinear incidence. Mathematical Biosciences & Engineering, 2010, 7 (4) : 837-850. doi: 10.3934/mbe.2010.7.837

[19]

Yu Yang, Lan Zou, Tonghua Zhang, Yancong Xu. Dynamical analysis of a diffusive SIRS model with general incidence rate. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2433-2451. doi: 10.3934/dcdsb.2020017

[20]

Yanan Zhao, Yuguo Lin, Daqing Jiang, Xuerong Mao, Yong Li. Stationary distribution of stochastic SIRS epidemic model with standard incidence. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2363-2378. doi: 10.3934/dcdsb.2016051

2020 Impact Factor: 1.327

Article outline

Figures and Tables

[Back to Top]