
-
Previous Article
Effects of fear and anti-predator response in a discrete system with delay
- DCDS-B Home
- This Issue
-
Next Article
Positive solutions of iterative functional differential equations and application to mixed-type functional differential equations
Positive solutions of a diffusive two competitive species model with saturation
Department of Mathematics, University of Mandalay, Mandalay 05032, Myanmar |
In this paper, the positive solutions of a diffusive two competitive species model with Bazykin functional response are investigated. We give the a priori estimates and compute the fixed point indices of trivial and semi-trivial solutions. And obtain the existence of solution and demonstrate the bifurcation of a coexistence state emanating from semi-trivial solutions. Finally, multiplicity and stability results are presented.
References:
[1] |
A. D. Bazykin, Nonlinear Dynamics of Interacting Populations, World Scientific Series on Nonlinear Science Series A, London, 1998.
doi: 10.1142/9789812798725. |
[2] |
M. G. Crandall and P. H. Rabinowitz,
Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.
doi: 10.1016/0022-1236(71)90015-2. |
[3] |
E. N. Dancer,
On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl., 91 (1983), 131-151.
doi: 10.1016/0022-247X(83)90098-7. |
[4] |
E. N. Dancer,
On positive solutions of some pairs of differential equations, Trans. Amer. Math. Soc., 284 (1984), 729-743.
doi: 10.1090/S0002-9947-1984-0743741-4. |
[5] |
E. N. Dancer and Z. T. Zhang,
Dynamics of Lotka-Volterra competition systems with large interaction, J. Differential Equations, 182 (2002), 470-489.
doi: 10.1006/jdeq.2001.4102. |
[6] |
Y. Du,
Realization of prescribed patterns in the competition model, J. Differential Equations, 193 (2003), 147-179.
doi: 10.1016/S0022-0396(03)00056-1. |
[7] |
M. Kamenskiĭ,
Measures of noncompactness and the perturbation theory of linear operators, Tartu Riikl. Ül. Toimetised, 430 (1977), 112-122.
|
[8] |
T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1995. |
[9] |
H. Li, Y. Li and W. Yang,
Existence and asymptotic behavior of positive solutions for a one-prey and two-competing-predators system with diffusion, Nonlinear Anal. Real World Appl., 27 (2016), 261-282.
doi: 10.1016/j.nonrwa.2015.07.010. |
[10] |
H. Li, P. Y. H. Pang and M. X. Wang,
Qualitative analysis of a diffusive prey-predator model with trophic interactions of three levels, Discrete Contin. Dyn. Syst. Ser. B., 17 (2012), 127-152.
doi: 10.3934/dcdsb.2012.17.127. |
[11] |
L. Li,
Coexistence theorems of steady states for predator-prey interacting systems, Trans. Amer. Math. Soc., 305 (1988), 143-166.
doi: 10.1090/S0002-9947-1988-0920151-1. |
[12] |
S. Li, J. Wu and Y. Dong,
Uniqueness and stability of a predator-prey model with C-M functional response, Comput. Math. Appl., 69 (2015), 1080-1095.
doi: 10.1016/j.camwa.2015.03.007. |
[13] |
W. Ni and M. X. Wang,
Dynamics and patterns of a diffusive Leslie-Gower prey-predator model with strong Allee effect in prey, J. Differential Equations, 261 (2016), 4244-4274.
doi: 10.1016/j.jde.2016.06.022. |
[14] |
P. Y. H. Pang and M. X. Wang,
Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion, Proc. London Math. Soc., 88 (2004), 135-157.
doi: 10.1112/S0024611503014321. |
[15] |
R. Peng and M. X. Wang,
On multiplicity and stability of positive solutions of a diffusive prey-predator model, J. Math. Anal. Appl., 316 (2006), 256-268.
doi: 10.1016/j.jmaa.2005.04.033. |
[16] |
R. Peng, M. X. Wang and W. Chen,
Positive steady states of a prey-predator model with diffusion and non-monotone conversion rate, Acta Math. Sin. Engl. Ser., 23 (2007), 749-760.
doi: 10.1007/s10114-005-0789-9. |
[17] |
K. Ryu and I. Ahn,
Positive solutions for ratio-dependent predator-prey interaction systems, J. Differential Equations, 218 (2005), 117-135.
doi: 10.1016/j.jde.2005.06.020. |
[18] |
M. X. Wang, Nonlinear Partial Differential Equations of Parabolic Type, Science Press, Beijing, (in Chinese), 1993.
![]() |
[19] |
M. X. Wang and Q. Wu,
Positive solutions of a prey-predator model with predator saturation and competition, J. Math. Anal. Appl., 345 (2008), 708-718.
doi: 10.1016/j.jmaa.2008.04.054. |
[20] |
M. Wei, J. Wu and G. Guo,
The effect of predator competition on positive solutions for a predator-prey model with diffusion, Nonlinear Anal., 75 (2012), 5053-5068.
doi: 10.1016/j.na.2012.04.021. |
[21] |
Y. Yamada,
Positive solutions for Lotka-Volterra systems with cross-diffusion, Handbook of Differential Equations: Stationary Partial Differential Equations, 6 (2008), 411-501.
doi: 10.1016/S1874-5733(08)80023-X. |
[22] |
J. Zhou,
Positive solutions of a diffusive Leslie-Gower predator-prey model with Bazykin functional response, Z. Angew. Math. Phys., 65 (2014), 1-18.
doi: 10.1007/s00033-013-0315-3. |
show all references
References:
[1] |
A. D. Bazykin, Nonlinear Dynamics of Interacting Populations, World Scientific Series on Nonlinear Science Series A, London, 1998.
doi: 10.1142/9789812798725. |
[2] |
M. G. Crandall and P. H. Rabinowitz,
Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.
doi: 10.1016/0022-1236(71)90015-2. |
[3] |
E. N. Dancer,
On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl., 91 (1983), 131-151.
doi: 10.1016/0022-247X(83)90098-7. |
[4] |
E. N. Dancer,
On positive solutions of some pairs of differential equations, Trans. Amer. Math. Soc., 284 (1984), 729-743.
doi: 10.1090/S0002-9947-1984-0743741-4. |
[5] |
E. N. Dancer and Z. T. Zhang,
Dynamics of Lotka-Volterra competition systems with large interaction, J. Differential Equations, 182 (2002), 470-489.
doi: 10.1006/jdeq.2001.4102. |
[6] |
Y. Du,
Realization of prescribed patterns in the competition model, J. Differential Equations, 193 (2003), 147-179.
doi: 10.1016/S0022-0396(03)00056-1. |
[7] |
M. Kamenskiĭ,
Measures of noncompactness and the perturbation theory of linear operators, Tartu Riikl. Ül. Toimetised, 430 (1977), 112-122.
|
[8] |
T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1995. |
[9] |
H. Li, Y. Li and W. Yang,
Existence and asymptotic behavior of positive solutions for a one-prey and two-competing-predators system with diffusion, Nonlinear Anal. Real World Appl., 27 (2016), 261-282.
doi: 10.1016/j.nonrwa.2015.07.010. |
[10] |
H. Li, P. Y. H. Pang and M. X. Wang,
Qualitative analysis of a diffusive prey-predator model with trophic interactions of three levels, Discrete Contin. Dyn. Syst. Ser. B., 17 (2012), 127-152.
doi: 10.3934/dcdsb.2012.17.127. |
[11] |
L. Li,
Coexistence theorems of steady states for predator-prey interacting systems, Trans. Amer. Math. Soc., 305 (1988), 143-166.
doi: 10.1090/S0002-9947-1988-0920151-1. |
[12] |
S. Li, J. Wu and Y. Dong,
Uniqueness and stability of a predator-prey model with C-M functional response, Comput. Math. Appl., 69 (2015), 1080-1095.
doi: 10.1016/j.camwa.2015.03.007. |
[13] |
W. Ni and M. X. Wang,
Dynamics and patterns of a diffusive Leslie-Gower prey-predator model with strong Allee effect in prey, J. Differential Equations, 261 (2016), 4244-4274.
doi: 10.1016/j.jde.2016.06.022. |
[14] |
P. Y. H. Pang and M. X. Wang,
Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion, Proc. London Math. Soc., 88 (2004), 135-157.
doi: 10.1112/S0024611503014321. |
[15] |
R. Peng and M. X. Wang,
On multiplicity and stability of positive solutions of a diffusive prey-predator model, J. Math. Anal. Appl., 316 (2006), 256-268.
doi: 10.1016/j.jmaa.2005.04.033. |
[16] |
R. Peng, M. X. Wang and W. Chen,
Positive steady states of a prey-predator model with diffusion and non-monotone conversion rate, Acta Math. Sin. Engl. Ser., 23 (2007), 749-760.
doi: 10.1007/s10114-005-0789-9. |
[17] |
K. Ryu and I. Ahn,
Positive solutions for ratio-dependent predator-prey interaction systems, J. Differential Equations, 218 (2005), 117-135.
doi: 10.1016/j.jde.2005.06.020. |
[18] |
M. X. Wang, Nonlinear Partial Differential Equations of Parabolic Type, Science Press, Beijing, (in Chinese), 1993.
![]() |
[19] |
M. X. Wang and Q. Wu,
Positive solutions of a prey-predator model with predator saturation and competition, J. Math. Anal. Appl., 345 (2008), 708-718.
doi: 10.1016/j.jmaa.2008.04.054. |
[20] |
M. Wei, J. Wu and G. Guo,
The effect of predator competition on positive solutions for a predator-prey model with diffusion, Nonlinear Anal., 75 (2012), 5053-5068.
doi: 10.1016/j.na.2012.04.021. |
[21] |
Y. Yamada,
Positive solutions for Lotka-Volterra systems with cross-diffusion, Handbook of Differential Equations: Stationary Partial Differential Equations, 6 (2008), 411-501.
doi: 10.1016/S1874-5733(08)80023-X. |
[22] |
J. Zhou,
Positive solutions of a diffusive Leslie-Gower predator-prey model with Bazykin functional response, Z. Angew. Math. Phys., 65 (2014), 1-18.
doi: 10.1007/s00033-013-0315-3. |



[1] |
Yukio Kan-On. Bifurcation structures of positive stationary solutions for a Lotka-Volterra competition model with diffusion II: Global structure. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 135-148. doi: 10.3934/dcds.2006.14.135 |
[2] |
Tai-Chia Lin, Tsung-Fang Wu. Existence and multiplicity of positive solutions for two coupled nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2911-2938. doi: 10.3934/dcds.2013.33.2911 |
[3] |
Jiafeng Liao, Peng Zhang, Jiu Liu, Chunlei Tang. Existence and multiplicity of positive solutions for a class of Kirchhoff type problems at resonance. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1959-1974. doi: 10.3934/dcdss.2016080 |
[4] |
Leonelo Iturriaga, Eugenio Massa. Existence, nonexistence and multiplicity of positive solutions for the poly-Laplacian and nonlinearities with zeros. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3831-3850. doi: 10.3934/dcds.2018166 |
[5] |
Yukio Kan-On. Global bifurcation structure of stationary solutions for a Lotka-Volterra competition model. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 147-162. doi: 10.3934/dcds.2002.8.147 |
[6] |
Shao-Yuan Huang. Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1271-1294. doi: 10.3934/cpaa.2018061 |
[7] |
Michael E. Filippakis, Nikolaos S. Papageorgiou. Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar $p$-Laplacian. Communications on Pure and Applied Analysis, 2004, 3 (4) : 729-756. doi: 10.3934/cpaa.2004.3.729 |
[8] |
Shao-Yuan Huang. Global bifurcation and exact multiplicity of positive solutions for the one-dimensional Minkowski-curvature problem with sign-changing nonlinearity. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3267-3284. doi: 10.3934/cpaa.2019147 |
[9] |
Xin Xu. Existence of monotone positive solutions of a neighbour based chemotaxis model and aggregation phenomenon. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4327-4348. doi: 10.3934/cpaa.2020195 |
[10] |
Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107 |
[11] |
Yi-hsin Cheng, Tsung-Fang Wu. Multiplicity and concentration of positive solutions for semilinear elliptic equations with steep potential. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2457-2473. doi: 10.3934/cpaa.2016044 |
[12] |
Xiyou Cheng, Zhaosheng Feng, Zhitao Zhang. Multiplicity of positive solutions to nonlinear systems of Hammerstein integral equations with weighted functions. Communications on Pure and Applied Analysis, 2020, 19 (1) : 221-240. doi: 10.3934/cpaa.2020012 |
[13] |
Lynnyngs Kelly Arruda, Francisco Odair de Paiva, Ilma Marques. A remark on multiplicity of positive solutions for a class of quasilinear elliptic systems. Conference Publications, 2011, 2011 (Special) : 112-116. doi: 10.3934/proc.2011.2011.112 |
[14] |
Masataka Shibata. Multiplicity of positive solutions to semi-linear elliptic problems on metric graphs. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4107-4126. doi: 10.3934/cpaa.2021147 |
[15] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[16] |
Ziqing Yuan, Jianshe Yu. Existence and multiplicity of positive solutions for a class of quasilinear Schrödinger equations in $ \mathbb R^N $$ ^\diamondsuit $. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3285-3303. doi: 10.3934/dcdss.2020281 |
[17] |
Meili Li, Maoan Han, Chunhai Kou. The existence of positive periodic solutions of a generalized. Mathematical Biosciences & Engineering, 2008, 5 (4) : 803-812. doi: 10.3934/mbe.2008.5.803 |
[18] |
Feliz Minhós, João Fialho. Existence and multiplicity of solutions in fourth order BVPs with unbounded nonlinearities. Conference Publications, 2013, 2013 (special) : 555-564. doi: 10.3934/proc.2013.2013.555 |
[19] |
Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2773-2786. doi: 10.3934/cpaa.2013.12.2773 |
[20] |
Ziqing Yuana, Jianshe Yu. Existence and multiplicity of nontrivial solutions of biharmonic equations via differential inclusion. Communications on Pure and Applied Analysis, 2020, 19 (1) : 391-405. doi: 10.3934/cpaa.2020020 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]