doi: 10.3934/dcdsb.2021202
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Spatiotemporal dynamics in a diffusive Holling-Tanner model near codimension-two bifurcations

1. 

Department of Mathematics, Harbin Institute of Technology at Weihai, Weihai 264209, China

2. 

School of Mathematics, Harbin Institute of Technology, Harbin 150001, China

* Corresponding author: Ben Niu

Received  March 2020 Revised  July 2021 Early access August 2021

Fund Project: The authors are supported by National Natural Science Foundation of China (No.11771109), Shandong Provincial Natural Science Foundation (No.ZR2019QA020)

We investigate spatiotemporal patterns near the Turing-Hopf and double Hopf bifurcations in a diffusive Holling-Tanner model on a one- dimensional spatial domain. Local and global stability of the positive constant steady state for the non-delayed system is studied. Introducing the generation time delay in prey growth, we discuss the existence of Turing-Hopf and double Hopf bifurcations and give the explicit dynamical classification near these bifurcation points. Finally, we obtain the complicated dynamics, including periodic oscillations, quasi-periodic oscillations on a three-dimensional torus, the coexistence of two stable nonconstant steady states, the coexistence of two spatially inhomogeneous periodic solutions, and strange attractors.

Citation: Daifeng Duan, Ben Niu, Junjie Wei. Spatiotemporal dynamics in a diffusive Holling-Tanner model near codimension-two bifurcations. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021202
References:
[1]

Q. An and W. Jiang, Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system, Discrete Cont. Dyn. Syst. Ser. B., 24 (2019), 487-510.  doi: 10.3934/dcdsb.2018183.  Google Scholar

[2]

Q. An and W. Jiang, Bifurcations and spatiotemporal patterns in a ratio-dependent diffusive Holling-Tanner system with time delay, Math. Meth. Appl. Sci., 42 (2019), 440-465.  doi: 10.1002/mma.5299.  Google Scholar

[3]

M. A. Aziz-Alaoui and M. Daher Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes, Appl. Math. Lett., 16 (2003), 1069-1075.  doi: 10.1016/S0893-9659(03)90096-6.  Google Scholar

[4]

M. Banerjee and S. Banerjee, Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model, Math. Biosci., 236 (2012), 64-76.  doi: 10.1016/j.mbs.2011.12.005.  Google Scholar

[5]

P. M. BattelinoC. GrebogiE. Ott and J. A. Yorke, Chaotic attractors on a $3$-torus, and torus break-up, Physica D., 39 (1989), 299-314.  doi: 10.1016/0167-2789(89)90012-2.  Google Scholar

[6]

P. A. Braza, The bifurcation structure of the Holling-Tanner model for predator-prey interaction using two-timing, SIAM J. Appl. Math., 63 (2003), 889-904.  doi: 10.1137/S0036139901393494.  Google Scholar

[7]

M. ChenR. WuB. Liu and L. Chen, Spatiotemporal dynamics in a ratio-dependent predator-prey model with time delay near the Turing-Hopf bifurcation point, Commun. Nonlinear Sci. Numer. Simulat., 77 (2019), 141-167.  doi: 10.1016/j.cnsns.2019.04.024.  Google Scholar

[8]

S. ChenY. Lou and J. Wei, Hopf bifurcation in a delayed reaction-diffusion-advection population model, J. Differential Equations, 264 (2018), 5333-5359.  doi: 10.1016/j.jde.2018.01.008.  Google Scholar

[9]

X. Chen and W. Jiang, Turing-Hopf bifurcation and multi-stable spatio-temporal patterns in the Lengyel-Epstein system, Nonlinear Anal. Real World Appl., 49 (2019), 386-404.  doi: 10.1016/j.nonrwa.2019.03.013.  Google Scholar

[10]

J. B. Collings, Bifurcation and stability analysis of a temperature-dependent mite predator-prey interaction model incorporating a prey refuge, Bull. Math. Biol., 57 (1995), 63-76.   Google Scholar

[11]

Y. DuB. NiuY. Guo and J. Wei, Double Hopf bifurcation in delayed reaction-diffusion systems, J. Dyn. Differ. Equ., 32 (2020), 313-358.  doi: 10.1007/s10884-018-9725-4.  Google Scholar

[12]

Y. Du and S.-B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Differential Equations, 203 (2004), 331-364.  doi: 10.1016/j.jde.2004.05.010.  Google Scholar

[13]

D. DuanB. Niu and J. Wei, Hopf-Hopf bifurcation and chaotic attractors in a delayed diffusive predator-prey model with fear effect, Chaos, Solitons, Fractals, 123 (2019), 206-216.  doi: 10.1016/j.chaos.2019.04.012.  Google Scholar

[14]

J.-P. Eckmann, Roads to turbulence in dissipative dynamical systems, Rev. Modern Phys., 53 (1981), 643-654.  doi: 10.1103/RevModPhys.53.643.  Google Scholar

[15]

T. Faria, Normal forms and Hopf bifurcation for partial differential equations with delays, Trans. Amer. Math. Soc., 352 (2000), 2217-2238.  doi: 10.1090/S0002-9947-00-02280-7.  Google Scholar

[16]

T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. Math. Anal. Appl., 254 (2001), 433-463.  doi: 10.1006/jmaa.2000.7182.  Google Scholar

[17]

T. Faria and W. Huang, Stability of periodic solutions arising from Hopf bifurcation for a reaction-diffusion equation with time delay, Fields Inst. Comm., 31 (2002), 125-141.   Google Scholar

[18]

T. Faria and L. T. Magalhães, Normal forms for retarded functional differential equations and applications to Bogdanov-Takens singularity, J. Differential Equations., 122 (1995), 201-224.  doi: 10.1006/jdeq.1995.1145.  Google Scholar

[19]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[20]

C. S. Holling, The functional response of predator to prey density and its role in mimicry and population regulation, Mem. Ent. Soc. Can., 97 (1965), 5-60.  doi: 10.4039/entm9745fv.  Google Scholar

[21]

S. B. Hsu and T. W. Huang, Global stability for a class of predator-prey system, SIAM J. Appl. Math., 55 (1995), 763-783. doi: 10.1137/S0036139993253201.  Google Scholar

[22]

J. HuangS. Ruan and J. Song, Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response, J. Differential Equations, 257 (2014), 1721-1752.  doi: 10.1016/j.jde.2014.04.024.  Google Scholar

[23]

G. E. Hutchinson, Circular causal systems in ecology, Ann. N. Y. Acad. Sci., 50 (1948), 221-246.  doi: 10.1111/j.1749-6632.1948.tb39854.x.  Google Scholar

[24]

W. Ko and K. Ryu, Non-constant positive steady-states of a diffusive predator-prey system in homogeneous environment, J. Math. Anal. Appl., 327 (2007), 539-549.  doi: 10.1016/j.jmaa.2006.04.077.  Google Scholar

[25]

P. H. Leslie and J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219-234.  doi: 10.1093/biomet/47.3-4.219.  Google Scholar

[26]

J. Li and W. Gao, A strongly coupled predator-prey system with modified Holling-Tanner functional response, Comput. Math. Appl., 60 (2010), 1908-1916.  doi: 10.1016/j.camwa.2009.03.124.  Google Scholar

[27]

X. LiW. Jiang and J. Shi, Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model, IMA J. Appl. Math., 78 (2013), 287-306.  doi: 10.1093/imamat/hxr050.  Google Scholar

[28]

Z.-P. Ma and W.-T. Li, Bifurcation analysis on a diffusive Holling-Tanner predator-prey model, Appl. Math. Model., 37 (2013), 4371-4384.  doi: 10.1016/j.apm.2012.09.036.  Google Scholar

[29] R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, 1973.   Google Scholar
[30]

A. F. NindjinM. A. Aziz-Alaoui and M. Cadivel, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay, Nonlinear Anal. Real World Appl., 7 (2006), 1104-1118.  doi: 10.1016/j.nonrwa.2005.10.003.  Google Scholar

[31]

R. Peng and M. Wang, Positive steady-states of the Holling-Tanner prey-predator model with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 149-164.  doi: 10.1017/S0308210500003814.  Google Scholar

[32]

S. Ruan and J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A: Math. Anal., 10 (2003), 863-874.   Google Scholar

[33]

D. Ruelle and F. Takens, On the nature of turbulence, Commun. Math. Phys., 20 (1971), 167-192.  doi: 10.1007/BF01646553.  Google Scholar

[34]

Z. Shen and J. Wei, Spatiotemporal patterns near the Turing-Hopf bifurcation in a delay-diffusion mussel-algae model, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29 (2019), 1950164, 25 pp. doi: 10.1142/S0218127419501645.  Google Scholar

[35]

H.-B. Shi and S. Ruan, Spatial, temporal and spatiotemporal patterns of diffusive predator-prey models with mutual interference, IMA J. Appl. Math., 80 (2015), 1534-1568.  doi: 10.1093/imamat/hxv006.  Google Scholar

[36]

Y. SongH. JiangQ.-X. Liu and Y. Yuan, Spatiotemporal dynamics of the diffusive Mussel-Algae model near Turing-Hopf bifurcation, SIAM J. Appl. Dyn. Syst., 16 (2017), 2030-2062.  doi: 10.1137/16M1097560.  Google Scholar

[37]

J. T. Tanner, The stability and the intrinsic growth rates of prey and predator populations, Ecology, 56 (1975), 855-867.  doi: 10.2307/1936296.  Google Scholar

[38]

R. K. Upadhyay and S. R. K. Iyengar, Effect of seasonality on the dynamics of 2 and 3 species prey-predator system, Nonlinear Anal. Real World Appl., 6 (2005), 509-530.  doi: 10.1016/j.nonrwa.2004.11.001.  Google Scholar

[39]

R. K. Upadhyay and V. Rai, Crisis-limited chaotic dynamics in ecological systems, Chaos Solitons Fractals, 12 (2001), 205-218.  doi: 10.1016/S0960-0779(00)00141-7.  Google Scholar

[40]

M. WangP. Y. H. Pang and W. Chen, Sharp spatial patterns of the diffusive Holling-Tanner prey-predator model in heterogeneous environment, IMA. J. Appl. Math., 73 (2008), 815-835.  doi: 10.1093/imamat/hxn016.  Google Scholar

[41]

D. J. WollkindJ. B. Collings and J. A. Logan, Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit flies, Bull. Math. Biol., 50 (1988), 379-409.   Google Scholar

[42]

X. Xu and J. Wei, Turing-Hopf bifurcation of a class of modified Leslie-Gower model with diffusion, Discrete Cont. Dyn. Syst. Ser. B., 23 (2018), 765-783.  doi: 10.3934/dcdsb.2018042.  Google Scholar

[43]

R. YafiaF. El Adnani and H. T. Alaoui, Limit cycle and numerical similations for small and large delays in a predator-prey model with modified Leslie-Gower and Holling-type II schemes, Nonlinear Anal. Real World Appl., 9 (2008), 2055-2067.  doi: 10.1016/j.nonrwa.2006.12.017.  Google Scholar

[44]

R. Yang and C. Zhang, Dynamics in a diffusive modified Leslie-Gower predator-prey model with time delay and prey harvesting, Nonlinear Dyn., 87 (2017), 863-878.  doi: 10.1007/s11071-016-3084-7.  Google Scholar

show all references

References:
[1]

Q. An and W. Jiang, Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system, Discrete Cont. Dyn. Syst. Ser. B., 24 (2019), 487-510.  doi: 10.3934/dcdsb.2018183.  Google Scholar

[2]

Q. An and W. Jiang, Bifurcations and spatiotemporal patterns in a ratio-dependent diffusive Holling-Tanner system with time delay, Math. Meth. Appl. Sci., 42 (2019), 440-465.  doi: 10.1002/mma.5299.  Google Scholar

[3]

M. A. Aziz-Alaoui and M. Daher Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes, Appl. Math. Lett., 16 (2003), 1069-1075.  doi: 10.1016/S0893-9659(03)90096-6.  Google Scholar

[4]

M. Banerjee and S. Banerjee, Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model, Math. Biosci., 236 (2012), 64-76.  doi: 10.1016/j.mbs.2011.12.005.  Google Scholar

[5]

P. M. BattelinoC. GrebogiE. Ott and J. A. Yorke, Chaotic attractors on a $3$-torus, and torus break-up, Physica D., 39 (1989), 299-314.  doi: 10.1016/0167-2789(89)90012-2.  Google Scholar

[6]

P. A. Braza, The bifurcation structure of the Holling-Tanner model for predator-prey interaction using two-timing, SIAM J. Appl. Math., 63 (2003), 889-904.  doi: 10.1137/S0036139901393494.  Google Scholar

[7]

M. ChenR. WuB. Liu and L. Chen, Spatiotemporal dynamics in a ratio-dependent predator-prey model with time delay near the Turing-Hopf bifurcation point, Commun. Nonlinear Sci. Numer. Simulat., 77 (2019), 141-167.  doi: 10.1016/j.cnsns.2019.04.024.  Google Scholar

[8]

S. ChenY. Lou and J. Wei, Hopf bifurcation in a delayed reaction-diffusion-advection population model, J. Differential Equations, 264 (2018), 5333-5359.  doi: 10.1016/j.jde.2018.01.008.  Google Scholar

[9]

X. Chen and W. Jiang, Turing-Hopf bifurcation and multi-stable spatio-temporal patterns in the Lengyel-Epstein system, Nonlinear Anal. Real World Appl., 49 (2019), 386-404.  doi: 10.1016/j.nonrwa.2019.03.013.  Google Scholar

[10]

J. B. Collings, Bifurcation and stability analysis of a temperature-dependent mite predator-prey interaction model incorporating a prey refuge, Bull. Math. Biol., 57 (1995), 63-76.   Google Scholar

[11]

Y. DuB. NiuY. Guo and J. Wei, Double Hopf bifurcation in delayed reaction-diffusion systems, J. Dyn. Differ. Equ., 32 (2020), 313-358.  doi: 10.1007/s10884-018-9725-4.  Google Scholar

[12]

Y. Du and S.-B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Differential Equations, 203 (2004), 331-364.  doi: 10.1016/j.jde.2004.05.010.  Google Scholar

[13]

D. DuanB. Niu and J. Wei, Hopf-Hopf bifurcation and chaotic attractors in a delayed diffusive predator-prey model with fear effect, Chaos, Solitons, Fractals, 123 (2019), 206-216.  doi: 10.1016/j.chaos.2019.04.012.  Google Scholar

[14]

J.-P. Eckmann, Roads to turbulence in dissipative dynamical systems, Rev. Modern Phys., 53 (1981), 643-654.  doi: 10.1103/RevModPhys.53.643.  Google Scholar

[15]

T. Faria, Normal forms and Hopf bifurcation for partial differential equations with delays, Trans. Amer. Math. Soc., 352 (2000), 2217-2238.  doi: 10.1090/S0002-9947-00-02280-7.  Google Scholar

[16]

T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. Math. Anal. Appl., 254 (2001), 433-463.  doi: 10.1006/jmaa.2000.7182.  Google Scholar

[17]

T. Faria and W. Huang, Stability of periodic solutions arising from Hopf bifurcation for a reaction-diffusion equation with time delay, Fields Inst. Comm., 31 (2002), 125-141.   Google Scholar

[18]

T. Faria and L. T. Magalhães, Normal forms for retarded functional differential equations and applications to Bogdanov-Takens singularity, J. Differential Equations., 122 (1995), 201-224.  doi: 10.1006/jdeq.1995.1145.  Google Scholar

[19]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[20]

C. S. Holling, The functional response of predator to prey density and its role in mimicry and population regulation, Mem. Ent. Soc. Can., 97 (1965), 5-60.  doi: 10.4039/entm9745fv.  Google Scholar

[21]

S. B. Hsu and T. W. Huang, Global stability for a class of predator-prey system, SIAM J. Appl. Math., 55 (1995), 763-783. doi: 10.1137/S0036139993253201.  Google Scholar

[22]

J. HuangS. Ruan and J. Song, Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response, J. Differential Equations, 257 (2014), 1721-1752.  doi: 10.1016/j.jde.2014.04.024.  Google Scholar

[23]

G. E. Hutchinson, Circular causal systems in ecology, Ann. N. Y. Acad. Sci., 50 (1948), 221-246.  doi: 10.1111/j.1749-6632.1948.tb39854.x.  Google Scholar

[24]

W. Ko and K. Ryu, Non-constant positive steady-states of a diffusive predator-prey system in homogeneous environment, J. Math. Anal. Appl., 327 (2007), 539-549.  doi: 10.1016/j.jmaa.2006.04.077.  Google Scholar

[25]

P. H. Leslie and J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219-234.  doi: 10.1093/biomet/47.3-4.219.  Google Scholar

[26]

J. Li and W. Gao, A strongly coupled predator-prey system with modified Holling-Tanner functional response, Comput. Math. Appl., 60 (2010), 1908-1916.  doi: 10.1016/j.camwa.2009.03.124.  Google Scholar

[27]

X. LiW. Jiang and J. Shi, Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model, IMA J. Appl. Math., 78 (2013), 287-306.  doi: 10.1093/imamat/hxr050.  Google Scholar

[28]

Z.-P. Ma and W.-T. Li, Bifurcation analysis on a diffusive Holling-Tanner predator-prey model, Appl. Math. Model., 37 (2013), 4371-4384.  doi: 10.1016/j.apm.2012.09.036.  Google Scholar

[29] R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, 1973.   Google Scholar
[30]

A. F. NindjinM. A. Aziz-Alaoui and M. Cadivel, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay, Nonlinear Anal. Real World Appl., 7 (2006), 1104-1118.  doi: 10.1016/j.nonrwa.2005.10.003.  Google Scholar

[31]

R. Peng and M. Wang, Positive steady-states of the Holling-Tanner prey-predator model with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 149-164.  doi: 10.1017/S0308210500003814.  Google Scholar

[32]

S. Ruan and J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A: Math. Anal., 10 (2003), 863-874.   Google Scholar

[33]

D. Ruelle and F. Takens, On the nature of turbulence, Commun. Math. Phys., 20 (1971), 167-192.  doi: 10.1007/BF01646553.  Google Scholar

[34]

Z. Shen and J. Wei, Spatiotemporal patterns near the Turing-Hopf bifurcation in a delay-diffusion mussel-algae model, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29 (2019), 1950164, 25 pp. doi: 10.1142/S0218127419501645.  Google Scholar

[35]

H.-B. Shi and S. Ruan, Spatial, temporal and spatiotemporal patterns of diffusive predator-prey models with mutual interference, IMA J. Appl. Math., 80 (2015), 1534-1568.  doi: 10.1093/imamat/hxv006.  Google Scholar

[36]

Y. SongH. JiangQ.-X. Liu and Y. Yuan, Spatiotemporal dynamics of the diffusive Mussel-Algae model near Turing-Hopf bifurcation, SIAM J. Appl. Dyn. Syst., 16 (2017), 2030-2062.  doi: 10.1137/16M1097560.  Google Scholar

[37]

J. T. Tanner, The stability and the intrinsic growth rates of prey and predator populations, Ecology, 56 (1975), 855-867.  doi: 10.2307/1936296.  Google Scholar

[38]

R. K. Upadhyay and S. R. K. Iyengar, Effect of seasonality on the dynamics of 2 and 3 species prey-predator system, Nonlinear Anal. Real World Appl., 6 (2005), 509-530.  doi: 10.1016/j.nonrwa.2004.11.001.  Google Scholar

[39]

R. K. Upadhyay and V. Rai, Crisis-limited chaotic dynamics in ecological systems, Chaos Solitons Fractals, 12 (2001), 205-218.  doi: 10.1016/S0960-0779(00)00141-7.  Google Scholar

[40]

M. WangP. Y. H. Pang and W. Chen, Sharp spatial patterns of the diffusive Holling-Tanner prey-predator model in heterogeneous environment, IMA. J. Appl. Math., 73 (2008), 815-835.  doi: 10.1093/imamat/hxn016.  Google Scholar

[41]

D. J. WollkindJ. B. Collings and J. A. Logan, Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit flies, Bull. Math. Biol., 50 (1988), 379-409.   Google Scholar

[42]

X. Xu and J. Wei, Turing-Hopf bifurcation of a class of modified Leslie-Gower model with diffusion, Discrete Cont. Dyn. Syst. Ser. B., 23 (2018), 765-783.  doi: 10.3934/dcdsb.2018042.  Google Scholar

[43]

R. YafiaF. El Adnani and H. T. Alaoui, Limit cycle and numerical similations for small and large delays in a predator-prey model with modified Leslie-Gower and Holling-type II schemes, Nonlinear Anal. Real World Appl., 9 (2008), 2055-2067.  doi: 10.1016/j.nonrwa.2006.12.017.  Google Scholar

[44]

R. Yang and C. Zhang, Dynamics in a diffusive modified Leslie-Gower predator-prey model with time delay and prey harvesting, Nonlinear Dyn., 87 (2017), 863-878.  doi: 10.1007/s11071-016-3084-7.  Google Scholar

$ B_{n}+C_{n}<0 $. (b) The bifurcation curves on the $ \tau $-$ d_{2} $ plane, where "TH" is the Turing-Hopf bifurcation point">Figure 1.  (a) The diagram of $ d_{2}(n^{2}) $ on the $ d_{2} $-$ n $ plane. In region "R", $ B_{n}+C_{n}<0 $. (b) The bifurcation curves on the $ \tau $-$ d_{2} $ plane, where "TH" is the Turing-Hopf bifurcation point
Figure 2.  The bifurcation set on the $ (\alpha_{1}, \alpha_{2}) $ plane
Figure 3.  The dynamical classifications in region $ \Re_{1} $-$ \Re_{6} $
Figure 4.  Choosing $ (\alpha_{1}, \alpha_{2}) = (-0.3936, -0.0858) $ at the red dot in region $ \Re_{1} $, the positive equilibrium $ E_{\ast}(u_{\ast}, v_{\ast}) $ is asymptotically stable. The initial functions are $ u(x, 0) = 1.2+0.02\cos2x $, $ v(x, 0) = 13.8-0.02\cos2x $
Figure 5.  Choosing $ (\alpha_{1}, \alpha_{2}) = (-0.3936, 0.0742) $ at the red dot in region $ \Re_{2} $, two nonconstant steady-states are stable. (a) The initial functions are $ u(x, 0) = 1.2+0.02\cos2x $, $ v(x, 0) = 13.8-0.02\cos2x $; (b) The initial functions are $ u(x, 0) = 1.2-0.02\cos2x $, $ v(x, 0) = 13.8+0.02\cos2x $
Figure 5(a), (b), respectively">Figure 6.  Choosing $ (\alpha_{1}, \alpha_{2}) = (-0.0936, 0.0742) $ at the red dot in region $ \Re_{3} $, two spatially inhomogeneous periodic solutions are stable. The initial functions of (a) and (b) are the same as those in Figure 5(a), (b), respectively
Figure 7.  Choosing $ (\alpha_{1}, \alpha_{2}) = (0.0064, 0.0742) $ at the red dot in region $ \Re_{4} $, the spatially homogeneous periodic solution is unstable (transient state) and two spatially inhomogeneous periodic solutions are stable. The initial functions of (a) and (b) are $ u(x, 0) = 1.2+0.02\cos2x $, $ v(x, 0) = 13.8-0.02\cos2x $; The initial functions of (c) and (d) are $ u(x, 0) = 1.2-0.02\cos2x $, $ v(x, 0) = 13.8+0.02\cos2x $
Figure 8.  The partial bifurcation set on the $ \tau $-$ r_{2} $ plane, where the colored curves stand for Hopf bifurcation curves
Figure 9.  Complete bifurcation sets near the double Hopf point "HH" of system (2)
Figure 10.  The dynamical classifications in region $ \textbf{D1} $-$ \textbf{D8} $
Figure 9), the constant steady state $ (u_{\ast}, v_{\ast}) $ of system (2) is asymptotically stable with the initial functions $ u_{0}(x) = 2.18+0.02\cos2x $, $ v_{0}(x) = 9.24-0.02\cos2x $">Figure 11.  When $ (\tau, r_{2}) = (6.25, 0.23) $ (see P1 in Figure 9), the constant steady state $ (u_{\ast}, v_{\ast}) $ of system (2) is asymptotically stable with the initial functions $ u_{0}(x) = 2.18+0.02\cos2x $, $ v_{0}(x) = 9.24-0.02\cos2x $
Figure 9), the spatially homogeneous periodic solutions of system (2) are stable with the initial functions $ u_{0}(x) = 2.18+0.02\cos2x $, $ v_{0}(x) = 9.24-0.02\cos2x $">Figure 12.  When $ (\tau, r_{2}) = (32.43, 0.23) $ (see P2 in Figure 9), the spatially homogeneous periodic solutions of system (2) are stable with the initial functions $ u_{0}(x) = 2.18+0.02\cos2x $, $ v_{0}(x) = 9.24-0.02\cos2x $
Figure 9), the spatially homogeneous periodic or quasi-periodic solutions of system (2) are unstable with the initial functions $ u_{0}(x) = 2.18+0.02\cos2x $, $ v_{0}(x) = 9.24-0.02\cos2x $. (a): the periodic solutions; (b): the quasi-periodic solutions">Figure 13.  When $ (\tau, r_{2}) = (33.58, 0.23) $ (see P3 in Figure 9), the spatially homogeneous periodic or quasi-periodic solutions of system (2) are unstable with the initial functions $ u_{0}(x) = 2.18+0.02\cos2x $, $ v_{0}(x) = 9.24-0.02\cos2x $. (a): the periodic solutions; (b): the quasi-periodic solutions
Figure 9). The parameter $ r_{2} = 0.23 $ is fixed with the initial functions $ u_{0}(x) = 2.18+0.02\cos2x $, $ v_{0}(x) = 9.24-0.02\cos2x $">Figure 14.  The corresponding Poincaré map on the $ u(0, t-2\tau)-v(0, t) $. (a) $ \tau = 33.58 $; (b) $ \tau = 34.2 $; (c) $ \tau = 35.41 $ (see P3, P4, P5 in Figure 9). The parameter $ r_{2} = 0.23 $ is fixed with the initial functions $ u_{0}(x) = 2.18+0.02\cos2x $, $ v_{0}(x) = 9.24-0.02\cos2x $
Figure 15.  The local maximum map of $ u $. (a) $ (\tau, r_{2}) = (34.2, 0.23) $; (b) $ (\tau, r_{2}) = (35.41, 0.23) $
Table 1.  The twelve unfoldings of system (20)
$ \mathrm{Case} $ $ \mathrm{Ia} $ $ \mathrm{Ib} $ $ \mathrm{II} $ $ \mathbf{III} $ $ \mathrm{IVa} $ $ \mathrm{IVb} $ $ \mathrm{V} $ $ \mathbf{VIa} $ $ \mathrm{VIb} $ $ \mathrm{VIIa} $ $ \mathrm{VIIb} $ $ \mathrm{VIII} $
$ d $ + + + + + + $ {-} $ $ {-} $ $ {-} $ $ {-} $ $ {-} $ $ {-} $
$ b $ + + + $ {-} $ $ {-} $ $ {-} $ + + + $ {-} $ $ {-} $ $ {-} $
$ c $ + + $ {-} $ + $ {-} $ $ {-} $ + $ {-} $ $ {-} $ + + $ {-} $
$ d-bc $ + $ {-} $ + + + $ {-} $ $ {-} $ + $ {-} $ + $ {-} $ $ {-} $
$ \mathrm{Case} $ $ \mathrm{Ia} $ $ \mathrm{Ib} $ $ \mathrm{II} $ $ \mathbf{III} $ $ \mathrm{IVa} $ $ \mathrm{IVb} $ $ \mathrm{V} $ $ \mathbf{VIa} $ $ \mathrm{VIb} $ $ \mathrm{VIIa} $ $ \mathrm{VIIb} $ $ \mathrm{VIII} $
$ d $ + + + + + + $ {-} $ $ {-} $ $ {-} $ $ {-} $ $ {-} $ $ {-} $
$ b $ + + + $ {-} $ $ {-} $ $ {-} $ + + + $ {-} $ $ {-} $ $ {-} $
$ c $ + + $ {-} $ + $ {-} $ $ {-} $ + $ {-} $ $ {-} $ + + $ {-} $
$ d-bc $ + $ {-} $ + + + $ {-} $ $ {-} $ + $ {-} $ + $ {-} $ $ {-} $
[1]

Qi An, Weihua Jiang. Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 487-510. doi: 10.3934/dcdsb.2018183

[2]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6185-6205. doi: 10.3934/dcdsb.2021013

[3]

Xiaofeng Xu, Junjie Wei. Turing-Hopf bifurcation of a class of modified Leslie-Gower model with diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 765-783. doi: 10.3934/dcdsb.2018042

[4]

Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete & Continuous Dynamical Systems, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997

[5]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

[6]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

[7]

Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026

[8]

Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152

[9]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[10]

Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735

[11]

Stephen Pankavich, Nathan Neri, Deborah Shutt. Bistable dynamics and Hopf bifurcation in a refined model of early stage HIV infection. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 2867-2893. doi: 10.3934/dcdsb.2020044

[12]

Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098

[13]

Fernando Antoneli, Ana Paula S. Dias, Rui Paiva. Coupled cell networks: Hopf bifurcation and interior symmetry. Conference Publications, 2011, 2011 (Special) : 71-78. doi: 10.3934/proc.2011.2011.71

[14]

R. Ouifki, M. L. Hbid, O. Arino. Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure & Applied Analysis, 2003, 2 (2) : 147-158. doi: 10.3934/cpaa.2003.2.147

[15]

Fatihcan M. Atay. Delayed feedback control near Hopf bifurcation. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 197-205. doi: 10.3934/dcdss.2008.1.197

[16]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[17]

Begoña Alarcón, Víctor Guíñez, Carlos Gutierrez. Hopf bifurcation at infinity for planar vector fields. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 247-258. doi: 10.3934/dcds.2007.17.247

[18]

Xiaoqin P. Wu, Liancheng Wang. Hopf bifurcation of a class of two coupled relaxation oscillators of the van der Pol type with delay. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 503-516. doi: 10.3934/dcdsb.2010.13.503

[19]

Fang Han, Bin Zhen, Ying Du, Yanhong Zheng, Marian Wiercigroch. Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 457-474. doi: 10.3934/dcdsb.2011.16.457

[20]

Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (181)
  • HTML views (182)
  • Cited by (0)

Other articles
by authors

[Back to Top]