[1]
|
Q. An and W. Jiang, Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system, Discrete Cont. Dyn. Syst. Ser. B., 24 (2019), 487-510.
doi: 10.3934/dcdsb.2018183.
|
[2]
|
Q. An and W. Jiang, Bifurcations and spatiotemporal patterns in a ratio-dependent diffusive Holling-Tanner system with time delay, Math. Meth. Appl. Sci., 42 (2019), 440-465.
doi: 10.1002/mma.5299.
|
[3]
|
M. A. Aziz-Alaoui and M. Daher Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes, Appl. Math. Lett., 16 (2003), 1069-1075.
doi: 10.1016/S0893-9659(03)90096-6.
|
[4]
|
M. Banerjee and S. Banerjee, Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model, Math. Biosci., 236 (2012), 64-76.
doi: 10.1016/j.mbs.2011.12.005.
|
[5]
|
P. M. Battelino, C. Grebogi, E. Ott and J. A. Yorke, Chaotic attractors on a $3$-torus, and torus break-up, Physica D., 39 (1989), 299-314.
doi: 10.1016/0167-2789(89)90012-2.
|
[6]
|
P. A. Braza, The bifurcation structure of the Holling-Tanner model for predator-prey interaction using two-timing, SIAM J. Appl. Math., 63 (2003), 889-904.
doi: 10.1137/S0036139901393494.
|
[7]
|
M. Chen, R. Wu, B. Liu and L. Chen, Spatiotemporal dynamics in a ratio-dependent predator-prey model with time delay near the Turing-Hopf bifurcation point, Commun. Nonlinear Sci. Numer. Simulat., 77 (2019), 141-167.
doi: 10.1016/j.cnsns.2019.04.024.
|
[8]
|
S. Chen, Y. Lou and J. Wei, Hopf bifurcation in a delayed reaction-diffusion-advection population model, J. Differential Equations, 264 (2018), 5333-5359.
doi: 10.1016/j.jde.2018.01.008.
|
[9]
|
X. Chen and W. Jiang, Turing-Hopf bifurcation and multi-stable spatio-temporal patterns in the Lengyel-Epstein system, Nonlinear Anal. Real World Appl., 49 (2019), 386-404.
doi: 10.1016/j.nonrwa.2019.03.013.
|
[10]
|
J. B. Collings, Bifurcation and stability analysis of a temperature-dependent mite predator-prey interaction model incorporating a prey refuge, Bull. Math. Biol., 57 (1995), 63-76.
|
[11]
|
Y. Du, B. Niu, Y. Guo and J. Wei, Double Hopf bifurcation in delayed reaction-diffusion systems, J. Dyn. Differ. Equ., 32 (2020), 313-358.
doi: 10.1007/s10884-018-9725-4.
|
[12]
|
Y. Du and S.-B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Differential Equations, 203 (2004), 331-364.
doi: 10.1016/j.jde.2004.05.010.
|
[13]
|
D. Duan, B. Niu and J. Wei, Hopf-Hopf bifurcation and chaotic attractors in a delayed diffusive predator-prey model with fear effect, Chaos, Solitons, Fractals, 123 (2019), 206-216.
doi: 10.1016/j.chaos.2019.04.012.
|
[14]
|
J.-P. Eckmann, Roads to turbulence in dissipative dynamical systems, Rev. Modern Phys., 53 (1981), 643-654.
doi: 10.1103/RevModPhys.53.643.
|
[15]
|
T. Faria, Normal forms and Hopf bifurcation for partial differential equations with delays, Trans. Amer. Math. Soc., 352 (2000), 2217-2238.
doi: 10.1090/S0002-9947-00-02280-7.
|
[16]
|
T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. Math. Anal. Appl., 254 (2001), 433-463.
doi: 10.1006/jmaa.2000.7182.
|
[17]
|
T. Faria and W. Huang, Stability of periodic solutions arising from Hopf bifurcation for a reaction-diffusion equation with time delay, Fields Inst. Comm., 31 (2002), 125-141.
|
[18]
|
T. Faria and L. T. Magalhães, Normal forms for retarded functional differential equations and applications to Bogdanov-Takens singularity, J. Differential Equations., 122 (1995), 201-224.
doi: 10.1006/jdeq.1995.1145.
|
[19]
|
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983.
doi: 10.1007/978-1-4612-1140-2.
|
[20]
|
C. S. Holling, The functional response of predator to prey density and its role in mimicry and population regulation, Mem. Ent. Soc. Can., 97 (1965), 5-60.
doi: 10.4039/entm9745fv.
|
[21]
|
S. B. Hsu and T. W. Huang, Global stability for a class of predator-prey system, SIAM J. Appl. Math., 55 (1995), 763-783.
doi: 10.1137/S0036139993253201.
|
[22]
|
J. Huang, S. Ruan and J. Song, Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response, J. Differential Equations, 257 (2014), 1721-1752.
doi: 10.1016/j.jde.2014.04.024.
|
[23]
|
G. E. Hutchinson, Circular causal systems in ecology, Ann. N. Y. Acad. Sci., 50 (1948), 221-246.
doi: 10.1111/j.1749-6632.1948.tb39854.x.
|
[24]
|
W. Ko and K. Ryu, Non-constant positive steady-states of a diffusive predator-prey system in homogeneous environment, J. Math. Anal. Appl., 327 (2007), 539-549.
doi: 10.1016/j.jmaa.2006.04.077.
|
[25]
|
P. H. Leslie and J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219-234.
doi: 10.1093/biomet/47.3-4.219.
|
[26]
|
J. Li and W. Gao, A strongly coupled predator-prey system with modified Holling-Tanner functional response, Comput. Math. Appl., 60 (2010), 1908-1916.
doi: 10.1016/j.camwa.2009.03.124.
|
[27]
|
X. Li, W. Jiang and J. Shi, Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model, IMA J. Appl. Math., 78 (2013), 287-306.
doi: 10.1093/imamat/hxr050.
|
[28]
|
Z.-P. Ma and W.-T. Li, Bifurcation analysis on a diffusive Holling-Tanner predator-prey model, Appl. Math. Model., 37 (2013), 4371-4384.
doi: 10.1016/j.apm.2012.09.036.
|
[29]
|
R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, 1973.
|
[30]
|
A. F. Nindjin, M. A. Aziz-Alaoui and M. Cadivel, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay, Nonlinear Anal. Real World Appl., 7 (2006), 1104-1118.
doi: 10.1016/j.nonrwa.2005.10.003.
|
[31]
|
R. Peng and M. Wang, Positive steady-states of the Holling-Tanner prey-predator model with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 149-164.
doi: 10.1017/S0308210500003814.
|
[32]
|
S. Ruan and J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A: Math. Anal., 10 (2003), 863-874.
|
[33]
|
D. Ruelle and F. Takens, On the nature of turbulence, Commun. Math. Phys., 20 (1971), 167-192.
doi: 10.1007/BF01646553.
|
[34]
|
Z. Shen and J. Wei, Spatiotemporal patterns near the Turing-Hopf bifurcation in a delay-diffusion mussel-algae model, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29 (2019), 1950164, 25 pp.
doi: 10.1142/S0218127419501645.
|
[35]
|
H.-B. Shi and S. Ruan, Spatial, temporal and spatiotemporal patterns of diffusive predator-prey models with mutual interference, IMA J. Appl. Math., 80 (2015), 1534-1568.
doi: 10.1093/imamat/hxv006.
|
[36]
|
Y. Song, H. Jiang, Q.-X. Liu and Y. Yuan, Spatiotemporal dynamics of the diffusive Mussel-Algae model near Turing-Hopf bifurcation, SIAM J. Appl. Dyn. Syst., 16 (2017), 2030-2062.
doi: 10.1137/16M1097560.
|
[37]
|
J. T. Tanner, The stability and the intrinsic growth rates of prey and predator populations, Ecology, 56 (1975), 855-867.
doi: 10.2307/1936296.
|
[38]
|
R. K. Upadhyay and S. R. K. Iyengar, Effect of seasonality on the dynamics of 2 and 3 species prey-predator system, Nonlinear Anal. Real World Appl., 6 (2005), 509-530.
doi: 10.1016/j.nonrwa.2004.11.001.
|
[39]
|
R. K. Upadhyay and V. Rai, Crisis-limited chaotic dynamics in ecological systems, Chaos Solitons Fractals, 12 (2001), 205-218.
doi: 10.1016/S0960-0779(00)00141-7.
|
[40]
|
M. Wang, P. Y. H. Pang and W. Chen, Sharp spatial patterns of the diffusive Holling-Tanner prey-predator model in heterogeneous environment, IMA. J. Appl. Math., 73 (2008), 815-835.
doi: 10.1093/imamat/hxn016.
|
[41]
|
D. J. Wollkind, J. B. Collings and J. A. Logan, Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit flies, Bull. Math. Biol., 50 (1988), 379-409.
|
[42]
|
X. Xu and J. Wei, Turing-Hopf bifurcation of a class of modified Leslie-Gower model with diffusion, Discrete Cont. Dyn. Syst. Ser. B., 23 (2018), 765-783.
doi: 10.3934/dcdsb.2018042.
|
[43]
|
R. Yafia, F. El Adnani and H. T. Alaoui, Limit cycle and numerical similations for small and large delays in a predator-prey model with modified Leslie-Gower and Holling-type II schemes, Nonlinear Anal. Real World Appl., 9 (2008), 2055-2067.
doi: 10.1016/j.nonrwa.2006.12.017.
|
[44]
|
R. Yang and C. Zhang, Dynamics in a diffusive modified Leslie-Gower predator-prey model with time delay and prey harvesting, Nonlinear Dyn., 87 (2017), 863-878.
doi: 10.1007/s11071-016-3084-7.
|