[1]
|
M. A. Aziz-Alaoui and M. Daher Okiye, Boundedness and global stability for a predator-prey model with modified leslie-gower and holling-type ii schemes, Appl. Math. Lett., 16 (2003), 1069-1075.
doi: 10.1016/S0893-9659(03)90096-6.
|
[2]
|
G. Barabás and G. Meszéna, When the exception becomes the rule: the disappearance of limiting similarity in the Lotka–Volterra model, J. Theoret. Biol., 258 (2009), 89-94.
doi: 10.1016/j.jtbi.2008.12.033.
|
[3]
|
S. Creel and D. Christianson, Relationships between direct predation and risk effects, Trends in Ecology & Evolution, 23 (2008), 194-201.
doi: 10.1016/j.tree.2007.12.004.
|
[4]
|
W. Cresswell, Predation in bird populations, Journal of Ornithology, 152 (2011), 251-263.
doi: 10.1007/s10336-010-0638-1.
|
[5]
|
Y.-J. Gong and J.-C. Huang, Bogdanov-Takens bifurcation in a Leslie-Gower predator-prey model with prey harvesting, Acta Math. Appl. Sin. Engl. Ser., 30 (2014), 239-244.
doi: 10.1007/s10255-014-0279-x.
|
[6]
|
E. González-Olivares, J. Mena-Lorca, A. Rojas-Palma and J. D. Flores, Dynamical complexities in the Leslie–Gower predator–prey model as consequences of the Allee effect on prey, Appl. Math. Model., 35 (2011), 366-381.
doi: 10.1016/j.apm.2010.07.001.
|
[7]
|
R. P. Gupta, M. Banerjee and P. Chandra, Bifurcation analysis and control of Leslie–Gower predator–prey model with Michaelis–Menten type prey-harvesting, Differ. Equ. Dyn. Syst., 20 (2012), 339-366.
doi: 10.1007/s12591-012-0142-6.
|
[8]
|
R. P. Gupta and P. Chandra, Bifurcation analysis of modified Leslie–Gower predator–prey model with Michaelis–Menten type prey harvesting, J. Math. Anal. Appl., 398 (2013), 278-295.
doi: 10.1016/j.jmaa.2012.08.057.
|
[9]
|
S. Halder, J. Bhattacharyya and S. Pal, Comparative studies on a predator–prey model subjected to fear and Allee effect with type Ⅰ and type Ⅱ foraging, J. Appl. Math. Comput., 62 (2020), 93-118.
doi: 10.1007/s12190-019-01275-w.
|
[10]
|
G. W. Harrison, Global stability of predator-prey interactions, J. Math. Biol., 8 (1979), 159-171.
doi: 10.1007/BF00279719.
|
[11]
|
C. S. Holling, The components of predation as revealed by a study of small-mammal predation of the European pine sawfly1, The Canadian Entomologist, 91 (1959), 293-320.
|
[12]
|
C. S. Holling, Some characteristics of simple types of predation and parasitism, Canadian Entomologist, 91 (1959), 385-398.
doi: 10.4039/Ent91385-7.
|
[13]
|
V. Křivan, On the Gause predator–prey model with a refuge: A fresh look at the history, J. Theoret. Biol., 274 (2011), 67-73.
doi: 10.1016/j.jtbi.2011.01.016.
|
[14]
|
P. H. Leslie and J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219-234.
doi: 10.1093/biomet/47.3-4.219.
|
[15]
|
M. Liu and K. Wang, Dynamics of a Leslie–Gower Holling-type ii predator–prey system with Lévy jumps, Nonlinear Anal., 85 (2013), 204-213.
doi: 10.1016/j.na.2013.02.018.
|
[16]
|
K. J. MacLeod, C. J. Krebs, R. Boonstra and M. J. Sheriff, Fear and lethality in snowshoe hares: The deadly effects of non-consumptive predation risk, Oikos, 127 (2018), 375-380.
doi: 10.1111/oik.04890.
|
[17]
|
P. Mishra, S. N. Raw and B. Tiwari, Study of a Leslie–Gower predator-prey model with prey defense and mutual interference of predators, Chaos Solitons Fractals, 120 (2019), 1-16.
doi: 10.1016/j.chaos.2019.01.012.
|
[18]
|
A. Oaten and W. W. Murdoch, Functional response and stability in predator-prey systems, The American Naturalist, 109 (1975), 289-298.
|
[19]
|
L. Perko, Differential Equations and Dynamical Systems, vol. 7, Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4684-0392-3.
|
[20]
|
E. L. Preisser and D. I. Bolnick, The many faces of fear: Comparing the pathways and impacts of nonconsumptive predator effects on prey populations, PloS One, 3 (2008), e2465.
doi: 10.1371/journal.pone.0002465.
|
[21]
|
H. Seno, A discrete prey–predator model preserving the dynamics of a structurally unstable Lotka–Volterra model, J. Difference Equ. Appl., 13 (2007), 1155-1170.
doi: 10.1080/10236190701464996.
|
[22]
|
M. K. Singh, B. S. Bhadauria and B. K. Singh, Bifurcation analysis of modified leslie-gower predator-prey model with double allee effect, Ain Shams Engineering Journal, 9 (2018), 1263-1277.
doi: 10.1016/j.asej.2016.07.007.
|
[23]
|
E. van Leeuwen, V. A. A. Jansen and P. W. Bright, How population dynamics shape the functional response in a one-predator–two-prey system, Ecology, 88 (2007), 1571-1581.
doi: 10.1890/06-1335.
|
[24]
|
J. Wang, Y. Cai, S. Fu and W. Wang, The effect of the fear factor on the dynamics of a predator-prey model incorporating the prey refuge, Chaos, 29 (2019), 083109, 10 pp.
doi: 10.1063/1.5111121.
|
[25]
|
X. Wang, L. Zanette and X. Zou, Modelling the fear effect in predator–prey interactions, J. Math. Biol., 73 (2016), 1179-1204.
doi: 10.1007/s00285-016-0989-1.
|
[26]
|
X. Wang and X. Zou, Modeling the fear effect in predator–prey interactions with adaptive avoidance of predators, Bull. Math. Biol., 79 (2017), 1325-1359.
doi: 10.1007/s11538-017-0287-0.
|
[27]
|
Y. Xia and S. Yuan, Survival analysis of a stochastic predator–prey model with prey refuge and fear effect, J. Biol. Dyn., 14 (2020), 871-892.
doi: 10.1080/17513758.2020.1853832.
|
[28]
|
Z. Xiao, Z. Li et al., Stability analysis of a mutual interference predator-prey model with the fear effect, Journal of Applied Science and Engineering, 22 (2019), 205–211.
|
[29]
|
Z. Zhang, R. K. Upadhyay and J. Datta, Bifurcation analysis of a modified Leslie–Gower model with Holling type-Ⅳ functional response and nonlinear prey harvesting, Adv. Difference Equ., 2018 (2018), Paper No. 127, 21 pp.
doi: 10.1186/s13662-018-1581-3.
|
[30]
|
Z.-Z. Zhang and H.-Z. Yang, Hopf bifurcation in a delayed predator-prey system with modified Leslie-Gower and Holling type Ⅲ schemes, Acta Automat. Sinica, 39 (2013), 610-616.
doi: 10.3724/SP.J.1004.2013.00610.
|
[31]
|
Y. Zhu and K. Wang, Existence and global attractivity of positive periodic solutions for a predator–prey model with modified Leslie–Gower Holling-type Ⅱ schemes, J. Math. Anal. Appl., 384 (2011), 400-408.
doi: 10.1016/j.jmaa.2011.05.081.
|