• Previous Article
    Counterexamples to local Lipschitz and local Hölder continuity with respect to the initial values for additive noise driven stochastic differential equations with smooth drift coefficient functions with at most polynomially growing derivatives
  • DCDS-B Home
  • This Issue
  • Next Article
    Positive solutions for critical quasilinear Schrödinger equations with potentials vanishing at infinity
doi: 10.3934/dcdsb.2021207
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Stabilization for hybrid stochastic differential equations driven by Lévy noise via periodically intermittent control

Department of Mathematics, Anhui Normal University, Wuhu 241000, China

* Corresponding author: Yong Ren

Received  February 2020 Revised  July 2021 Early access August 2021

Fund Project: This work is supported by the NNSF of China (11871076)

In this work, the issue of stabilization for a class of continuous-time hybrid stochastic systems with Lévy noise (HLSDEs, in short) is explored by using periodic intermittent control. As for the unstable HLSDEs, we design a periodic intermittent controller. The main idea is to compare the controlled system with a stabilized one with a periodic intermittent drift coefficient, which enables us to use the existing stability results on the HLSDEs. An illustrative example is proposed to show the feasibility of the obtained result.

Citation: Yong Ren, Qi Zhang. Stabilization for hybrid stochastic differential equations driven by Lévy noise via periodically intermittent control. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021207
References:
[1]

K. Ding, Q. Zhu and H. Li, A generalized system approach to intermittent nonfragile control of stochastic neutral time-varying delay systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, on line, (2020). doi: 10.1109/TSMC.2020.2965091.  Google Scholar

[2]

M. Li and F. Deng, Almost sure stability with general decay rate of neutral stochastic delayed hybrid systems with Lévy noise, Nonlinear Anal. Hybrid Syst., 24 (2017), 171-185.  doi: 10.1016/j.nahs.2017.01.001.  Google Scholar

[3]

C. LiuX. XunQ. Zhang and Y. Li, Dynamical analysis and optimal control in a hybrid stochastic double delayed bioeconomic system with impulsive contaminants emission and Lévy jumps, Appl. Math. Comput., 352 (2019), 99-118.  doi: 10.1016/j.amc.2019.01.045.  Google Scholar

[4]

D. LiuW. Wang and J. L. Menaldi, Almost sure asymptotic stabilization of differential equations with time-varying delay by Lévy noise, Nonlinear Dynamics, 79 (2015), 163-172.  doi: 10.1007/s11071-014-1653-1.  Google Scholar

[5]

M. Liu and Y. Zhu, Stationary distribution and ergodicity of a stochastic hybrid competition model with Lévy jumps, Nonlinear Anal. Hybrid Syst., 30 (2018), 225-239.  doi: 10.1016/j.nahs.2018.05.002.  Google Scholar

[6]

X. Mao, Stabilization of continuous-time hybrid stochastic differential equations by discrete-time feedback control, Automatica J. IFAC, 49 (2013), 3677-3681.  doi: 10.1016/j.automatica.2013.09.005.  Google Scholar

[7]

X. MaoJ. Lam and L. Huang, Stabilisation of hybrid stochastic differential equations by delay feedback control, Systems Control Lett., 57 (2008), 927-935.  doi: 10.1016/j.sysconle.2008.05.002.  Google Scholar

[8]

X. MaoG. G Yin and C. Yuan, Stabilization and destabilization of hybrid systems of stochastic differential equations, Automatica J. IFAC, 43 (2007), 264-273.  doi: 10.1016/j.automatica.2006.09.006.  Google Scholar

[9]

Q. QiuW. LiuL. Hu and J. Lu, Stabilisation of hybrid stochastic systems under disrete observation and sample delay, Control. Theorey Appl., 33 (2016), 1023-1030.  doi: 10.7641/CTA.2016.50995.  Google Scholar

[10]

J. Shao, Stabilization of regime-switching processes by feedback control based on discrete time state observations, SIAM J. Control Optim., 55 (2017), 724-740.  doi: 10.1137/16M1066336.  Google Scholar

[11]

F. WuX. Mao and S. Hu, Stochastic suppression and stabilization of functional differential equations, Systems Control Lett., 59 (2010), 745-753.  doi: 10.1016/j.sysconle.2010.08.011.  Google Scholar

[12]

Y. Wu, S. Zhuang and W. Li, Periodically intermittent discrete observation control for synchronization of the general stochastic complex network, Automatica J. IFAC, 110 (2019), 108591, 11 pp. doi: 10.1016/j.automatica.2019.108591.  Google Scholar

[13]

Y. XuH. Zhou and W. Li, Stabilisation of stochastic delayed systems with Lévy noise on networks via periodically intermittent control, Internat. J. Control, 93 (2020), 505-518.  doi: 10.1080/00207179.2018.1479538.  Google Scholar

[14]

W. Yin and J. Cao, Almost sure exponential stabilization and suppression by periodically intermittent stochastic perturbation with jumps, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 4493-4513.  doi: 10.3934/dcdsb.2020109.  Google Scholar

[15]

W. YinJ. CaoY. Ren and G. Zheng, Improved results on stabilization of $G$-SDEs by feedback control based on discrete-time observations, SIAM J. Control Optim., 59 (2021), 1927-1950.  doi: 10.1137/20M1311028.  Google Scholar

[16]

S. YouW. LiuJ. LuX. Mao and Q. Qiu, Stabilization of hybrid systems by feedback control based on discrete-time state observations, SIAM J. Control Optim., 53 (2015), 905-925.  doi: 10.1137/140985779.  Google Scholar

[17]

W. ZhouJ. YangX. YangA. DaiH. Liu and J. Fang, $p$th Moment exponential stability of stochastic delayed hybrid systems with Lévy noise, Appl. Math. Model., 39 (2015), 5650-5658.  doi: 10.1016/j.apm.2015.01.025.  Google Scholar

[18]

Q. Zhu, Asymptotic stability in the $p$th moment for stochastic differential equations with Lévy noise, J. Math. Anal. Appl., 416 (2014), 126-142.  doi: 10.1016/j.jmaa.2014.02.016.  Google Scholar

[19]

Q. Zhu, Razumikhin-type theorem for stochastic functional differential equations with Lêvy noise and Markov switching, Internat. J. Control, 90 (2017), 1703-1712.  doi: 10.1080/00207179.2016.1219069.  Google Scholar

[20]

Q. Zhu, Stability analysis of stochastic delay differential equations with Lévy noise, Systems Control Lett., 118 (2018), 62-68.  doi: 10.1016/j.sysconle.2018.05.015.  Google Scholar

[21]

X. ZongF. WuG. Yin and Z. Jin, Almost sure and $p$th-moment stability and stabilization of regime-switching jump diffusion systems, SIAM J. Control Optim., 52 (2014), 2595-2622.  doi: 10.1137/14095251X.  Google Scholar

show all references

References:
[1]

K. Ding, Q. Zhu and H. Li, A generalized system approach to intermittent nonfragile control of stochastic neutral time-varying delay systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, on line, (2020). doi: 10.1109/TSMC.2020.2965091.  Google Scholar

[2]

M. Li and F. Deng, Almost sure stability with general decay rate of neutral stochastic delayed hybrid systems with Lévy noise, Nonlinear Anal. Hybrid Syst., 24 (2017), 171-185.  doi: 10.1016/j.nahs.2017.01.001.  Google Scholar

[3]

C. LiuX. XunQ. Zhang and Y. Li, Dynamical analysis and optimal control in a hybrid stochastic double delayed bioeconomic system with impulsive contaminants emission and Lévy jumps, Appl. Math. Comput., 352 (2019), 99-118.  doi: 10.1016/j.amc.2019.01.045.  Google Scholar

[4]

D. LiuW. Wang and J. L. Menaldi, Almost sure asymptotic stabilization of differential equations with time-varying delay by Lévy noise, Nonlinear Dynamics, 79 (2015), 163-172.  doi: 10.1007/s11071-014-1653-1.  Google Scholar

[5]

M. Liu and Y. Zhu, Stationary distribution and ergodicity of a stochastic hybrid competition model with Lévy jumps, Nonlinear Anal. Hybrid Syst., 30 (2018), 225-239.  doi: 10.1016/j.nahs.2018.05.002.  Google Scholar

[6]

X. Mao, Stabilization of continuous-time hybrid stochastic differential equations by discrete-time feedback control, Automatica J. IFAC, 49 (2013), 3677-3681.  doi: 10.1016/j.automatica.2013.09.005.  Google Scholar

[7]

X. MaoJ. Lam and L. Huang, Stabilisation of hybrid stochastic differential equations by delay feedback control, Systems Control Lett., 57 (2008), 927-935.  doi: 10.1016/j.sysconle.2008.05.002.  Google Scholar

[8]

X. MaoG. G Yin and C. Yuan, Stabilization and destabilization of hybrid systems of stochastic differential equations, Automatica J. IFAC, 43 (2007), 264-273.  doi: 10.1016/j.automatica.2006.09.006.  Google Scholar

[9]

Q. QiuW. LiuL. Hu and J. Lu, Stabilisation of hybrid stochastic systems under disrete observation and sample delay, Control. Theorey Appl., 33 (2016), 1023-1030.  doi: 10.7641/CTA.2016.50995.  Google Scholar

[10]

J. Shao, Stabilization of regime-switching processes by feedback control based on discrete time state observations, SIAM J. Control Optim., 55 (2017), 724-740.  doi: 10.1137/16M1066336.  Google Scholar

[11]

F. WuX. Mao and S. Hu, Stochastic suppression and stabilization of functional differential equations, Systems Control Lett., 59 (2010), 745-753.  doi: 10.1016/j.sysconle.2010.08.011.  Google Scholar

[12]

Y. Wu, S. Zhuang and W. Li, Periodically intermittent discrete observation control for synchronization of the general stochastic complex network, Automatica J. IFAC, 110 (2019), 108591, 11 pp. doi: 10.1016/j.automatica.2019.108591.  Google Scholar

[13]

Y. XuH. Zhou and W. Li, Stabilisation of stochastic delayed systems with Lévy noise on networks via periodically intermittent control, Internat. J. Control, 93 (2020), 505-518.  doi: 10.1080/00207179.2018.1479538.  Google Scholar

[14]

W. Yin and J. Cao, Almost sure exponential stabilization and suppression by periodically intermittent stochastic perturbation with jumps, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 4493-4513.  doi: 10.3934/dcdsb.2020109.  Google Scholar

[15]

W. YinJ. CaoY. Ren and G. Zheng, Improved results on stabilization of $G$-SDEs by feedback control based on discrete-time observations, SIAM J. Control Optim., 59 (2021), 1927-1950.  doi: 10.1137/20M1311028.  Google Scholar

[16]

S. YouW. LiuJ. LuX. Mao and Q. Qiu, Stabilization of hybrid systems by feedback control based on discrete-time state observations, SIAM J. Control Optim., 53 (2015), 905-925.  doi: 10.1137/140985779.  Google Scholar

[17]

W. ZhouJ. YangX. YangA. DaiH. Liu and J. Fang, $p$th Moment exponential stability of stochastic delayed hybrid systems with Lévy noise, Appl. Math. Model., 39 (2015), 5650-5658.  doi: 10.1016/j.apm.2015.01.025.  Google Scholar

[18]

Q. Zhu, Asymptotic stability in the $p$th moment for stochastic differential equations with Lévy noise, J. Math. Anal. Appl., 416 (2014), 126-142.  doi: 10.1016/j.jmaa.2014.02.016.  Google Scholar

[19]

Q. Zhu, Razumikhin-type theorem for stochastic functional differential equations with Lêvy noise and Markov switching, Internat. J. Control, 90 (2017), 1703-1712.  doi: 10.1080/00207179.2016.1219069.  Google Scholar

[20]

Q. Zhu, Stability analysis of stochastic delay differential equations with Lévy noise, Systems Control Lett., 118 (2018), 62-68.  doi: 10.1016/j.sysconle.2018.05.015.  Google Scholar

[21]

X. ZongF. WuG. Yin and Z. Jin, Almost sure and $p$th-moment stability and stabilization of regime-switching jump diffusion systems, SIAM J. Control Optim., 52 (2014), 2595-2622.  doi: 10.1137/14095251X.  Google Scholar

Figure 1.  The paths of the solution $ Y(s) $ to the system (39) for state 1
Figure 2.  The paths of the solution $ Y(s) $ to the system (40) for state 1
Figure 3.  The paths of the solution $ Y(s) $ to the system (39) for state 2
Figure 4.  The paths of the solution $ Y(s) $ to the system (40) for state 2
[1]

Peng Cui, Hongguo Zhao, Jun-e Feng. State estimation for discrete linear systems with observation time-delayed noise. Journal of Industrial & Management Optimization, 2011, 7 (1) : 79-85. doi: 10.3934/jimo.2011.7.79

[2]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[3]

Wensheng Yin, Jinde Cao. Almost sure exponential stabilization and suppression by periodically intermittent stochastic perturbation with jumps. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4493-4513. doi: 10.3934/dcdsb.2020109

[4]

Badr-eddine Berrhazi, Mohamed El Fatini, Tomás Caraballo, Roger Pettersson. A stochastic SIRI epidemic model with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2415-2431. doi: 10.3934/dcdsb.2018057

[5]

Shaohong Fang, Jing Huang, Jinying Ma. Stabilization of a discrete-time system via nonlinear impulsive control. Discrete & Continuous Dynamical Systems - S, 2020, 13 (6) : 1803-1811. doi: 10.3934/dcdss.2020106

[6]

Wei Mao, Yanan Jiang, Liangjian Hu, Xuerong Mao. Stabilization by intermittent control for hybrid stochastic differential delay equations. Discrete & Continuous Dynamical Systems - B, 2022, 27 (1) : 569-581. doi: 10.3934/dcdsb.2021055

[7]

Adam Andersson, Felix Lindner. Malliavin regularity and weak approximation of semilinear SPDEs with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4271-4294. doi: 10.3934/dcdsb.2019081

[8]

Xiangjun Wang, Jianghui Wen, Jianping Li, Jinqiao Duan. Impact of $\alpha$-stable Lévy noise on the Stommel model for the thermohaline circulation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1575-1584. doi: 10.3934/dcdsb.2012.17.1575

[9]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[10]

Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221

[11]

Chaman Kumar, Sotirios Sabanis. On tamed milstein schemes of SDEs driven by Lévy noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 421-463. doi: 10.3934/dcdsb.2017020

[12]

Justin Cyr, Phuong Nguyen, Sisi Tang, Roger Temam. Review of local and global existence results for stochastic pdes with Lévy noise. Discrete & Continuous Dynamical Systems, 2020, 40 (10) : 5639-5710. doi: 10.3934/dcds.2020241

[13]

Justin Cyr, Phuong Nguyen, Roger Temam. Stochastic one layer shallow water equations with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3765-3818. doi: 10.3934/dcdsb.2018331

[14]

Ran Dong, Xuerong Mao. Asymptotic stabilization of continuous-time periodic stochastic systems by feedback control based on periodic discrete-time observations. Mathematical Control & Related Fields, 2020, 10 (4) : 715-734. doi: 10.3934/mcrf.2020017

[15]

Elena K. Kostousova. On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints. Discrete & Continuous Dynamical Systems, 2018, 38 (12) : 6149-6162. doi: 10.3934/dcds.2018153

[16]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[17]

Ziheng Chen, Siqing Gan, Xiaojie Wang. Mean-square approximations of Lévy noise driven SDEs with super-linearly growing diffusion and jump coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4513-4545. doi: 10.3934/dcdsb.2019154

[18]

Chaman Kumar. On Milstein-type scheme for SDE driven by Lévy noise with super-linear coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1405-1446. doi: 10.3934/dcdsb.2020167

[19]

Xueqin Li, Chao Tang, Tianmin Huang. Poisson $S^2$-almost automorphy for stochastic processes and its applications to SPDEs driven by Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3309-3345. doi: 10.3934/dcdsb.2018282

[20]

Markus Riedle, Jianliang Zhai. Large deviations for stochastic heat equations with memory driven by Lévy-type noise. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 1983-2005. doi: 10.3934/dcds.2018080

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (144)
  • HTML views (203)
  • Cited by (0)

Other articles
by authors

[Back to Top]