\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stabilization for hybrid stochastic differential equations driven by Lévy noise via periodically intermittent control

  • * Corresponding author: Yong Ren

    * Corresponding author: Yong Ren 

This work is supported by the NNSF of China (11871076)

Abstract Full Text(HTML) Figure(4) Related Papers Cited by
  • In this work, the issue of stabilization for a class of continuous-time hybrid stochastic systems with Lévy noise (HLSDEs, in short) is explored by using periodic intermittent control. As for the unstable HLSDEs, we design a periodic intermittent controller. The main idea is to compare the controlled system with a stabilized one with a periodic intermittent drift coefficient, which enables us to use the existing stability results on the HLSDEs. An illustrative example is proposed to show the feasibility of the obtained result.

    Mathematics Subject Classification: Primary: 93D15; Secondary: 60H10, 60J75.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The paths of the solution $ Y(s) $ to the system (39) for state 1

    Figure 2.  The paths of the solution $ Y(s) $ to the system (40) for state 1

    Figure 3.  The paths of the solution $ Y(s) $ to the system (39) for state 2

    Figure 4.  The paths of the solution $ Y(s) $ to the system (40) for state 2

  • [1] K. Ding, Q. Zhu and H. Li, A generalized system approach to intermittent nonfragile control of stochastic neutral time-varying delay systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, on line, (2020). doi: 10.1109/TSMC.2020.2965091.
    [2] M. Li and F. Deng, Almost sure stability with general decay rate of neutral stochastic delayed hybrid systems with Lévy noise, Nonlinear Anal. Hybrid Syst., 24 (2017), 171-185.  doi: 10.1016/j.nahs.2017.01.001.
    [3] C. LiuX. XunQ. Zhang and Y. Li, Dynamical analysis and optimal control in a hybrid stochastic double delayed bioeconomic system with impulsive contaminants emission and Lévy jumps, Appl. Math. Comput., 352 (2019), 99-118.  doi: 10.1016/j.amc.2019.01.045.
    [4] D. LiuW. Wang and J. L. Menaldi, Almost sure asymptotic stabilization of differential equations with time-varying delay by Lévy noise, Nonlinear Dynamics, 79 (2015), 163-172.  doi: 10.1007/s11071-014-1653-1.
    [5] M. Liu and Y. Zhu, Stationary distribution and ergodicity of a stochastic hybrid competition model with Lévy jumps, Nonlinear Anal. Hybrid Syst., 30 (2018), 225-239.  doi: 10.1016/j.nahs.2018.05.002.
    [6] X. Mao, Stabilization of continuous-time hybrid stochastic differential equations by discrete-time feedback control, Automatica J. IFAC, 49 (2013), 3677-3681.  doi: 10.1016/j.automatica.2013.09.005.
    [7] X. MaoJ. Lam and L. Huang, Stabilisation of hybrid stochastic differential equations by delay feedback control, Systems Control Lett., 57 (2008), 927-935.  doi: 10.1016/j.sysconle.2008.05.002.
    [8] X. MaoG. G Yin and C. Yuan, Stabilization and destabilization of hybrid systems of stochastic differential equations, Automatica J. IFAC, 43 (2007), 264-273.  doi: 10.1016/j.automatica.2006.09.006.
    [9] Q. QiuW. LiuL. Hu and J. Lu, Stabilisation of hybrid stochastic systems under disrete observation and sample delay, Control. Theorey Appl., 33 (2016), 1023-1030.  doi: 10.7641/CTA.2016.50995.
    [10] J. Shao, Stabilization of regime-switching processes by feedback control based on discrete time state observations, SIAM J. Control Optim., 55 (2017), 724-740.  doi: 10.1137/16M1066336.
    [11] F. WuX. Mao and S. Hu, Stochastic suppression and stabilization of functional differential equations, Systems Control Lett., 59 (2010), 745-753.  doi: 10.1016/j.sysconle.2010.08.011.
    [12] Y. Wu, S. Zhuang and W. Li, Periodically intermittent discrete observation control for synchronization of the general stochastic complex network, Automatica J. IFAC, 110 (2019), 108591, 11 pp. doi: 10.1016/j.automatica.2019.108591.
    [13] Y. XuH. Zhou and W. Li, Stabilisation of stochastic delayed systems with Lévy noise on networks via periodically intermittent control, Internat. J. Control, 93 (2020), 505-518.  doi: 10.1080/00207179.2018.1479538.
    [14] W. Yin and J. Cao, Almost sure exponential stabilization and suppression by periodically intermittent stochastic perturbation with jumps, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 4493-4513.  doi: 10.3934/dcdsb.2020109.
    [15] W. YinJ. CaoY. Ren and G. Zheng, Improved results on stabilization of $G$-SDEs by feedback control based on discrete-time observations, SIAM J. Control Optim., 59 (2021), 1927-1950.  doi: 10.1137/20M1311028.
    [16] S. YouW. LiuJ. LuX. Mao and Q. Qiu, Stabilization of hybrid systems by feedback control based on discrete-time state observations, SIAM J. Control Optim., 53 (2015), 905-925.  doi: 10.1137/140985779.
    [17] W. ZhouJ. YangX. YangA. DaiH. Liu and J. Fang, $p$th Moment exponential stability of stochastic delayed hybrid systems with Lévy noise, Appl. Math. Model., 39 (2015), 5650-5658.  doi: 10.1016/j.apm.2015.01.025.
    [18] Q. Zhu, Asymptotic stability in the $p$th moment for stochastic differential equations with Lévy noise, J. Math. Anal. Appl., 416 (2014), 126-142.  doi: 10.1016/j.jmaa.2014.02.016.
    [19] Q. Zhu, Razumikhin-type theorem for stochastic functional differential equations with Lêvy noise and Markov switching, Internat. J. Control, 90 (2017), 1703-1712.  doi: 10.1080/00207179.2016.1219069.
    [20] Q. Zhu, Stability analysis of stochastic delay differential equations with Lévy noise, Systems Control Lett., 118 (2018), 62-68.  doi: 10.1016/j.sysconle.2018.05.015.
    [21] X. ZongF. WuG. Yin and Z. Jin, Almost sure and $p$th-moment stability and stabilization of regime-switching jump diffusion systems, SIAM J. Control Optim., 52 (2014), 2595-2622.  doi: 10.1137/14095251X.
  • 加载中

Figures(4)

SHARE

Article Metrics

HTML views(1752) PDF downloads(491) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return