July  2022, 27(7): 3913-3931. doi: 10.3934/dcdsb.2021211

Coexistence states of a Holling type II predator-prey system with self and cross-diffusion terms

Departamento de Matemática, Universidade de Brasília, 70910-900, Brasília- DF, Brazil

* Corresponding author: Willian Cintra

Received  March 2021 Revised  May 2021 Published  July 2022 Early access  August 2021

Fund Project: The first author was partially supported by the project CAPES/Brazil - PrInt $ n^o $ $ 88887.466484/2019-00 $. The second author was partially supported by the project CAPES/Brazil - PrInt $ n^o $ $ 88887.466484/2019 - 00 $ and CNPq/Brazil with the grant $ 311562/2020 - 5 $. The third autor is supported by the project CAPES/Brazil Proc. $ n^o $ $ 2788/2015-02 $

In this paper, we present results about existence and non-existence of coexistence states for a reaction-diffusion predator-prey model with the two species living in a bounded region with inhospitable boundary and Holling type II functional response. The predator is a specialist and presents self-diffusion and cross-diffusion behavior. We show the existence of coexistence states by combining global bifurcation theory with the method of sub- and supersolutions.

Citation: Willian Cintra, Carlos Alberto dos Santos, Jiazheng Zhou. Coexistence states of a Holling type II predator-prey system with self and cross-diffusion terms. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3913-3931. doi: 10.3934/dcdsb.2021211
References:
[1]

H. Amann, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J., 21 (1971/72), 125-146.  doi: 10.1512/iumj.1971.21.21012.

[2]

R. S. Cantrell and C. Cosner, Diffusive logistic equations with indefinite weights: Population models in disrupted environments. II, SIAM J. Math. Anal., 22 (1991), 1043-1064.  doi: 10.1137/0522068.

[3]

A. CasalJ. C. Eilbeck and J. López-Gómez, Existence and uniqueness of coexistence states for a predator-prey model with diffusion, Differential Integral Equations, 7 (1994), 411-439. 

[4]

Y. S. ChoiR. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 719-730.  doi: 10.3934/dcds.2004.10.719.

[5]

W. CintraC. Morales-Rodrigo and A. Suárez, Unilateral global bifurcation for a class of quasilinear elliptic systems and applications, J. Differential Equations, 267 (2019), 619-657.  doi: 10.1016/j.jde.2019.01.021.

[6]

C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete Contin. Dyn. Syst., 34 (2014), 1701-1745.  doi: 10.3934/dcds.2014.34.1701.

[7]

C. Cosner and A. C. Lazer, Stable coexistence states in the Volterra-Lotka competition model with diffusion, SIAM J. Appl. Math., 44 (1984), 1112-1132.  doi: 10.1137/0144080.

[8]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.

[9]

M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal., 52 (1973), 161-180.  doi: 10.1007/BF00282325.

[10]

Y. Du, Effects of a degeneracy in the competition model. I. Classical and generalized steady-state solutions, J. Differential Equations, 181 (2002), 92-132.  doi: 10.1006/jdeq.2001.4074.

[11]

Y. Du and Y. Lou, S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model, J. Differential Equations, 144 (1998), 390-440.  doi: 10.1006/jdeq.1997.3394.

[12]

L. Dung and H. L. Smith, Steady states of models of microbial growth and competition with chemotaxis, J. Math. Anal. Appl., 229 (1999), 295-318.  doi: 10.1006/jmaa.1998.6167.

[13]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Secondorder, Classics in Mathematics, Springer-Verlag, Berlin, 2001, reprint of the 1998 edition.

[14]

W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge, J. Differential Equations, 231 (2006), 534-550.  doi: 10.1016/j.jde.2006.08.001.

[15]

K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion, J. Differential Equations, 197 (2004), 315-348.  doi: 10.1016/j.jde.2003.08.003.

[16]

K. Kuto and Y. Yamada, On limit systems for some population models with cross-diffusion, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2745-2769.  doi: 10.3934/dcdsb.2012.17.2745.

[17]

D. LeL. V. Nguyen and T. T. Nguyen, Regularity and coexistence problems for strongly coupled elliptic systems, Indiana Univ. Math. J., 56 (2007), 1749-1791.  doi: 10.1512/iumj.2007.56.2979.

[18]

C. Li, On global bifurcation for a cross-diffusion predator-prey system with prey-taxis, Comput. Math. Appl., 76 (2018), 1014-1025.  doi: 10.1016/j.camwa.2018.05.037.

[19]

J. López-Gómez, Nonlinear eigenvalues and global bifurcation application to the search of positive solutions for general Lotka-Volterra reaction diffusion systems with two species, Differential Integral Equations, 7 (1994), 1427-1452. 

[20]

J. López-Gómez, Linear Second Order Elliptic Operators, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. doi: 10.1142/8664.

[21]

J. López-Gómez and R. Pardo, Existence and uniqueness of coexistence states for the predator-prey model with diffusion: The scalar case, Differential Integral Equations, 6 (1993), 1025-1031. 

[22]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.

[23]

K. Nakashima and Y. Yamada, Positive steady states for prey-predator models with cross-diffusion, Adv. Differential Equations, 1 (1996), 1099-1122. 

[24]

C. V. Pao, Strongly coupled elliptic systems and applications to Lotka-Volterra models with cross-diffusion, Nonlinear Anal., 6 (2005), 1197-1217.  doi: 10.1016/j.na.2004.10.008.

[25]

R. Peng and J. Shi, Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case, J. Differential Equations, 247 (2009), 866-886.  doi: 10.1016/j.jde.2009.03.008.

[26]

W. H. Ruan, Positive steady-state solutions of a competing reaction-diffusion system with large cross-diffusion coefficients, J. Math. Anal. Appl, 197 (1996), 558-578.  doi: 10.1006/jmaa.1996.0039.

[27]

K. Ryu and I. Ahn, Coexistence theorem of steady states for nonlinear self-cross diffusion systems with competitive dynamics, J. Math. Anal. Appl, 283 (2003), 46-65.  doi: 10.1016/S0022-247X(03)00162-8.

[28]

N. ShigesadaK. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theo. Biology, 79 (1979), 83-99.  doi: 10.1016/0022-5193(79)90258-3.

[29]

H. YuanJ. WuY. Jia and H. Nie, Coexistence states of a predator-prey model with cross-diffusion, Nonlinear Anal. Real World Appl., 41 (2018), 179-203.  doi: 10.1016/j.nonrwa.2017.10.009.

[30]

J. Zhou and C. Mu, Coexistence states of a Holling type-II predator-prey system, J. Math. Anal. Appl, 369 (2010), 555-563.  doi: 10.1016/j.jmaa.2010.04.001.

[31]

J. Zhou and C. Mu, Corrigendum to "Coexistence states of a Holling type-II predator-prey system" [J. Math. Anal. Appl. 369 (2) (2010) 555–563], [mr2651701], J. Math. Anal. Appl., 383 (2011), 636-639.  doi: 10.1016/j.jmaa.2011.06.033.

show all references

References:
[1]

H. Amann, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J., 21 (1971/72), 125-146.  doi: 10.1512/iumj.1971.21.21012.

[2]

R. S. Cantrell and C. Cosner, Diffusive logistic equations with indefinite weights: Population models in disrupted environments. II, SIAM J. Math. Anal., 22 (1991), 1043-1064.  doi: 10.1137/0522068.

[3]

A. CasalJ. C. Eilbeck and J. López-Gómez, Existence and uniqueness of coexistence states for a predator-prey model with diffusion, Differential Integral Equations, 7 (1994), 411-439. 

[4]

Y. S. ChoiR. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 719-730.  doi: 10.3934/dcds.2004.10.719.

[5]

W. CintraC. Morales-Rodrigo and A. Suárez, Unilateral global bifurcation for a class of quasilinear elliptic systems and applications, J. Differential Equations, 267 (2019), 619-657.  doi: 10.1016/j.jde.2019.01.021.

[6]

C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete Contin. Dyn. Syst., 34 (2014), 1701-1745.  doi: 10.3934/dcds.2014.34.1701.

[7]

C. Cosner and A. C. Lazer, Stable coexistence states in the Volterra-Lotka competition model with diffusion, SIAM J. Appl. Math., 44 (1984), 1112-1132.  doi: 10.1137/0144080.

[8]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.

[9]

M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal., 52 (1973), 161-180.  doi: 10.1007/BF00282325.

[10]

Y. Du, Effects of a degeneracy in the competition model. I. Classical and generalized steady-state solutions, J. Differential Equations, 181 (2002), 92-132.  doi: 10.1006/jdeq.2001.4074.

[11]

Y. Du and Y. Lou, S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model, J. Differential Equations, 144 (1998), 390-440.  doi: 10.1006/jdeq.1997.3394.

[12]

L. Dung and H. L. Smith, Steady states of models of microbial growth and competition with chemotaxis, J. Math. Anal. Appl., 229 (1999), 295-318.  doi: 10.1006/jmaa.1998.6167.

[13]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Secondorder, Classics in Mathematics, Springer-Verlag, Berlin, 2001, reprint of the 1998 edition.

[14]

W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge, J. Differential Equations, 231 (2006), 534-550.  doi: 10.1016/j.jde.2006.08.001.

[15]

K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion, J. Differential Equations, 197 (2004), 315-348.  doi: 10.1016/j.jde.2003.08.003.

[16]

K. Kuto and Y. Yamada, On limit systems for some population models with cross-diffusion, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2745-2769.  doi: 10.3934/dcdsb.2012.17.2745.

[17]

D. LeL. V. Nguyen and T. T. Nguyen, Regularity and coexistence problems for strongly coupled elliptic systems, Indiana Univ. Math. J., 56 (2007), 1749-1791.  doi: 10.1512/iumj.2007.56.2979.

[18]

C. Li, On global bifurcation for a cross-diffusion predator-prey system with prey-taxis, Comput. Math. Appl., 76 (2018), 1014-1025.  doi: 10.1016/j.camwa.2018.05.037.

[19]

J. López-Gómez, Nonlinear eigenvalues and global bifurcation application to the search of positive solutions for general Lotka-Volterra reaction diffusion systems with two species, Differential Integral Equations, 7 (1994), 1427-1452. 

[20]

J. López-Gómez, Linear Second Order Elliptic Operators, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. doi: 10.1142/8664.

[21]

J. López-Gómez and R. Pardo, Existence and uniqueness of coexistence states for the predator-prey model with diffusion: The scalar case, Differential Integral Equations, 6 (1993), 1025-1031. 

[22]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.

[23]

K. Nakashima and Y. Yamada, Positive steady states for prey-predator models with cross-diffusion, Adv. Differential Equations, 1 (1996), 1099-1122. 

[24]

C. V. Pao, Strongly coupled elliptic systems and applications to Lotka-Volterra models with cross-diffusion, Nonlinear Anal., 6 (2005), 1197-1217.  doi: 10.1016/j.na.2004.10.008.

[25]

R. Peng and J. Shi, Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case, J. Differential Equations, 247 (2009), 866-886.  doi: 10.1016/j.jde.2009.03.008.

[26]

W. H. Ruan, Positive steady-state solutions of a competing reaction-diffusion system with large cross-diffusion coefficients, J. Math. Anal. Appl, 197 (1996), 558-578.  doi: 10.1006/jmaa.1996.0039.

[27]

K. Ryu and I. Ahn, Coexistence theorem of steady states for nonlinear self-cross diffusion systems with competitive dynamics, J. Math. Anal. Appl, 283 (2003), 46-65.  doi: 10.1016/S0022-247X(03)00162-8.

[28]

N. ShigesadaK. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theo. Biology, 79 (1979), 83-99.  doi: 10.1016/0022-5193(79)90258-3.

[29]

H. YuanJ. WuY. Jia and H. Nie, Coexistence states of a predator-prey model with cross-diffusion, Nonlinear Anal. Real World Appl., 41 (2018), 179-203.  doi: 10.1016/j.nonrwa.2017.10.009.

[30]

J. Zhou and C. Mu, Coexistence states of a Holling type-II predator-prey system, J. Math. Anal. Appl, 369 (2010), 555-563.  doi: 10.1016/j.jmaa.2010.04.001.

[31]

J. Zhou and C. Mu, Corrigendum to "Coexistence states of a Holling type-II predator-prey system" [J. Math. Anal. Appl. 369 (2) (2010) 555–563], [mr2651701], J. Math. Anal. Appl., 383 (2011), 636-639.  doi: 10.1016/j.jmaa.2011.06.033.

Figure 1.  The region of coexistence of (1): on the left side, we have the general setting; the dark part represents the region of non-existence of coexistence states, and the area with dashed line represents the region of coexistence state. On the right, the portion with dashed lines represents the region of coexistence states in the simplest case $ d \equiv d(0) $, $ P\equiv 1 $ and $ R \equiv 1 $
[1]

Takashi Kajiwara. The sub-supersolution method for the FitzHugh-Nagumo type reaction-diffusion system with heterogeneity. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2441-2465. doi: 10.3934/dcds.2018101

[2]

Dumitru Motreanu, Calogero Vetro, Francesca Vetro. Systems of quasilinear elliptic equations with dependence on the gradient via subsolution-supersolution method. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 309-321. doi: 10.3934/dcdss.2018017

[3]

Liping Wang. Arbitrarily many solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Communications on Pure and Applied Analysis, 2010, 9 (3) : 761-778. doi: 10.3934/cpaa.2010.9.761

[4]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6185-6205. doi: 10.3934/dcdsb.2021013

[5]

Kousuke Kuto. Stability and Hopf bifurcation of coexistence steady-states to an SKT model in spatially heterogeneous environment. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 489-509. doi: 10.3934/dcds.2009.24.489

[6]

Yanqin Fang, De Tang. Method of sub-super solutions for fractional elliptic equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3153-3165. doi: 10.3934/dcdsb.2017212

[7]

Tomasz Cieślak, Kentarou Fujie. Global existence in the 1D quasilinear parabolic-elliptic chemotaxis system with critical nonlinearity. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 165-176. doi: 10.3934/dcdss.2020009

[8]

Zhanyuan Hou. Geometric method for global stability of discrete population models. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3305-3334. doi: 10.3934/dcdsb.2020063

[9]

Federica Mennuni, Addolorata Salvatore. Existence of minimizers for a quasilinear elliptic system of gradient type. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022013

[10]

Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735

[11]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

[12]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[13]

Pablo Álvarez-Caudevilla, Julián López-Gómez. Characterizing the existence of coexistence states in a class of cooperative systems. Conference Publications, 2009, 2009 (Special) : 24-33. doi: 10.3934/proc.2009.2009.24

[14]

King-Yeung Lam, Wei-Ming Ni. Limiting profiles of semilinear elliptic equations with large advection in population dynamics. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1051-1067. doi: 10.3934/dcds.2010.28.1051

[15]

Inmaculada Antón, Julián López-Gómez. Global bifurcation diagrams of steady-states for a parabolic model related to a nuclear engineering problem. Conference Publications, 2013, 2013 (special) : 21-30. doi: 10.3934/proc.2013.2013.21

[16]

Pierre Magal. Global stability for differential equations with homogeneous nonlinearity and application to population dynamics. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 541-560. doi: 10.3934/dcdsb.2002.2.541

[17]

Rushun Tian, Zhi-Qiang Wang. Bifurcation results on positive solutions of an indefinite nonlinear elliptic system. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 335-344. doi: 10.3934/dcds.2013.33.335

[18]

Julián López-Gómez, Marcela Molina-Meyer, Andrea Tellini. Intricate bifurcation diagrams for a class of one-dimensional superlinear indefinite problems of interest in population dynamics. Conference Publications, 2013, 2013 (special) : 515-524. doi: 10.3934/proc.2013.2013.515

[19]

Xiang-Ping Yan, Wan-Tong Li. Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 367-399. doi: 10.3934/dcdsb.2012.17.367

[20]

Mengyao Ding, Wei Wang. Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4665-4684. doi: 10.3934/dcdsb.2018328

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (423)
  • HTML views (332)
  • Cited by (0)

[Back to Top]