In this paper, we study the existence of positive solutions for the following quasilinear Schrödinger equations
$ \begin{equation*} -\triangle u+V(x)u+\frac{\kappa}{2}[\triangle|u|^{2}]u = \lambda K(x)h(u)+\mu|u|^{2^*-2}u, \quad x\in\mathbb{R}^{N}, \end{equation*} $
where $ \kappa>0 $, $ \lambda>0, \mu>0, h\in C(\mathbb{R}, \mathbb{R}) $ is superlinear at infinity, the potentials $ V(x) $ and $ K(x) $ are vanishing at infinity. In order to discuss the existence of solutions we apply minimax techniques together with careful $ L^{\infty} $-estimates. For the subcritical case ($ \mu = 0 $) we can deal with large $ \kappa>0 $. For the critical case we treat that $ \kappa>0 $ is small.
Citation: |
[1] |
J. F. L. Aires and M. A. S. Souto, Equation with positive coefficient in the quasilinear term and vanishing potential, Topol. Methods Nonlinear Anal., 46 (2015), 813-833.
![]() ![]() |
[2] |
C. O. Alves and M. A. S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity, J. Differential Equations, 254 (2013), 1977-1991.
doi: 10.1016/j.jde.2012.11.013.![]() ![]() ![]() |
[3] |
C. O. Alves, Y. Wang and Y. Shen, Soliton solutions for a class of quasilinear Schrödinger equations with a parameter, J. Differential Equations, 259 (2015), 318-343.
doi: 10.1016/j.jde.2015.02.030.![]() ![]() ![]() |
[4] |
H. Berestycki and P.-L. Lions, Nonlinear scalar field equations Ⅰ Existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313-346.
doi: 10.1007/BF00250555.![]() ![]() ![]() |
[5] |
H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Commun. Pure Appl. Math., 36 (1983), 437-477.
doi: 10.1002/cpa.3160360405.![]() ![]() ![]() |
[6] |
L. Brizhik, A. Eremko, B. Piette and W. J. Zakrzewski, Electron self-trapping in a discrete two-dimensional lattice, Physica D, 159 (2001), 71-90.
doi: 10.1016/S0167-2789(01)00332-3.![]() ![]() |
[7] |
L. Brizhik, A. Eremko, B. Piette and W. J. Zakrzewski, Static solutions of a D-dimensional modified nonlinear Schrödinger equation, Nonlinearity, 16 (2003), 1481-1497.
doi: 10.1088/0951-7715/16/4/317.![]() ![]() ![]() |
[8] |
J. Chen, X. Huang and B. Cheng, Positive solutions for a class of quasilinear Schrödinger equations with superlinear condition, Appl. Math. Lett., 87 (2019), 165-171.
doi: 10.1016/j.aml.2018.07.035.![]() ![]() ![]() |
[9] |
J. Chen, X. Huang, B. Cheng and C. Zhu, Some results on standing wave solutions for a class of quasilinear Schrödinger equations, J. Math. Phys., 60 (2019), 091506, 55 pp.
doi: 10.1063/1.5093720.![]() ![]() ![]() |
[10] |
A. de Bouard, N. Hayashi and J.-C. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Comm. Math. Phys., 189 (1997), 73-105.
doi: 10.1007/s002200050191.![]() ![]() ![]() |
[11] |
Y. Deng and W. Shuai, Non-trivial solutions for a semilinear biharmonic problem with critical growth and potential vanishing at infinity, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 281-299.
doi: 10.1017/S0308210513001170.![]() ![]() ![]() |
[12] |
B. Hartmann and W. J. Zakrzewski, Electrons on hexagonal lattices and applications to nanotubes, Phys. Rev. B, 68 (2003), 184302.
doi: 10.1103/PhysRevB.68.184302.![]() ![]() |
[13] |
C. Huang and G. Jia, Existence of positive solutions for supercritical quasilinear Schrödinger elliptic equations, J. Mathe. Anal. Appl., 472 (2019), 705-727.
doi: 10.1016/j.jmaa.2018.11.048.![]() ![]() ![]() |
[14] |
L. Jeanjean and K. Tanaka, A positive solution for a nonlinear Schrödinger equation on $\mathbb{R}^{N}$, Indiana Univ. Math. J., 54 (2005), 443-464.
doi: 10.1512/iumj.2005.54.2502.![]() ![]() ![]() |
[15] |
S. Kurihura, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan, 50 (1981), 3262-3267.
doi: 10.1143/JPSJ.50.3262.![]() ![]() |
[16] |
Q. Li and X. Wu, Existence, multiplicity, and concentration of solutions for generalized quasilinear Schödinger equations with critical growth, J. Math. Phys., 58 (2017), 041501.
doi: 10.1063/1.4982035.![]() ![]() ![]() |
[17] |
Z. Liang, J. Gao and A. Li, Existence of positive solutions for a class of quasilinear Schrödinger equations with local superlinear nonlinearities, J. Math. Anal. Appl., 484 (2020), 123732.
doi: 10.1016/j.jmaa.2019.123732.![]() ![]() ![]() |
[18] |
P. L. Lions, The concentration-compactness principle in the calculus of variation. The locally compact case, part Ⅰ and Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109–145 and 223–283.
doi: 10.1016/S0294-1449(16)30422-X.![]() ![]() ![]() |
[19] |
U. B. Severo and G. M. de Carvalho, Quasilinear Schrödinger equations with a positive parameter and involving unbounded or decaying potentials, Appl. Anal., 100 (2021), 229-252.
doi: 10.1080/00036811.2019.1599106.![]() ![]() ![]() |
[20] |
U. B. Severo, E. Gloss and E. D. da Silva, On a class of quasilinear Schrödinger equations with superlinear or asymptotically linear terms, J. Differential Equations, 263 (2017), 3550-3580.
doi: 10.1016/j.jde.2017.04.040.![]() ![]() ![]() |
[21] |
Y. Shen and Y. Wang, Standing waves for a class of quasilinear Schrödinger equations, Complex Var. Elliptic Equ., 61 (2016), 817-842.
doi: 10.1080/17476933.2015.1119818.![]() ![]() ![]() |
[22] |
Y. Wang, A class of quasilinear Schrödinger equations with critical or supercritical exponents, Compu. Math. Appl., 70 (2015), 562-572.
doi: 10.1016/j.camwa.2015.05.016.![]() ![]() ![]() |
[23] |
Y. Wang and Z. Li, Existence of solutions to quasilinear Schrödinger equations involving critical Sobolev exponent, Taiwanese Journal of Math., 22 (2018), 401-420.
doi: 10.11650/tjm/8150.![]() ![]() ![]() |
[24] |
M. Willem, Minimax Theorems, Birkhäuser Boston, Inc., Boston, MA, 1996.
doi: 10.1007/978-1-4612-4146-1.![]() ![]() ![]() |
[25] |
M. Yang, C. A. Santos and J. Zhou, Least action nodal solutions for a quasilinear defocusing Schrödinger equation with supercritical nonlinearity, Commun. Contemp. Math., 21 (2019), 1850026, 23 pp.
doi: 10.1142/S0219199718500268.![]() ![]() ![]() |
[26] |
W. Zou, Sign-Changing Critical Points Theory, Springer, New York, 2008.
![]() ![]() |