[1]
|
C. R. Adams and J. A. Clarkson, Properties of functions $f(x, y)$ of bounded variation, Transactions of the American Mathematical Society, 36 (1934), 711-730.
doi: 10.2307/1989819.
|
[2]
|
T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, New York-Heidelberg, 1976.
|
[3]
|
B. Ashton and I. Doust, Functions of bounded variation on compact subsets of the plane, Studia Math., 169 (2005), 163-188.
doi: 10.4064/sm169-2-5.
|
[4]
|
L. Boltzmann, Lectures on Gas Theory, Calif. 1964.
|
[5]
|
P. L. Boyland, Bifurcations of circle maps: Arnol'd tongues, bistability and rotation intervals, Communications in Mathematical Physics, 106 (1986), 353-381.
doi: 10.1007/BF01207252.
|
[6]
|
V. V. Chistyakov and Y. V. Tretyachenko, Maps of several variables of finite total variation. I. Mixed differences and the total variation, J. Math. Anal. Appl., 370 (2010), 672-686.
doi: 10.1016/j.jmaa.2010.04.055.
|
[7]
|
Z. Elhadj and J. C. Sprott, A new simple 2-D piecewise linear map, J. Syst. Sci. Complex., 23 (2010), 379-389.
doi: 10.1007/s11424-010-7184-z.
|
[8]
|
J. W. Gibbs, Elementary Principles in Statistical Mechanics, Dover, New York, 1960.
|
[9]
|
J. Giménez, N. Merentes and M. Vivas, Functions of bounded variation on compact subsets of $\Bbb C$, Comment. Math., 54 (2014), 3-19.
doi: 10.14708/cm.v54i1.757.
|
[10]
|
L. Glass, M. R. Guevara, A. Shrier and R. Perez, Bifurcation and chaos in a periodically stimulated cardiac oscillator, Physica D: Nonlinear Phenomena, 7 (1983), 89-101.
|
[11]
|
P. Góra and A. Boyarsky, Absolutely continuous invariant measures for piecewise expanding $C^2$ transformations in $R^N$, Israel J. Math., 67 (1989), 272-286.
doi: 10.1007/BF02764946.
|
[12]
|
G. H. Hardy, On double Fourier series, and especially those which represent the double zeta-function with real and incommensurable parameters, Quart. J. Math. Oxford, 37 (1905/1906), 53-79.
|
[13]
|
M. Hénon, A two-dimensional mapping with a strange attractor, Comm. Math. Phys., 50 (1976), 69-77.
doi: 10.1007/BF01608556.
|
[14]
|
F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Z, 180 (1982), 119-140.
doi: 10.1007/BF01215004.
|
[15]
|
S. Ito, S. Tanaka and H. Nakada, On unimodal linear transformations and chaos. I, Tokyo J. Math., 2 (1979) 221–239.
doi: 10.3792/pjaa.55.231.
|
[16]
|
S. Ito, S. Tanaka and H. Nakada, On unimodal linear transformations and chaos. II, Tokyo J. Math., 2 (1979), 241-259.
doi: 10.3836/tjm/1270216321.
|
[17]
|
J. P. Keener, Chaotic behavior in piecewise continuous difference equations, Trans. Amer. Math. Soc., 261 (1980), 589-604.
doi: 10.1090/S0002-9947-1980-0580905-3.
|
[18]
|
J. Komorník, Asymptotic periodicity of Markov and related operators, Dynamics Reported, 2 (1993), 31-68.
doi: 10.1007/978-3-642-61232-9_2.
|
[19]
|
J. Komorník, Asymptotic periodicity of the iterates of weakly constrictive Markoy operators, Tohoku Math. J., 38 (1986), 15-27.
doi: 10.2748/tmj/1178228533.
|
[20]
|
J. Komorník and A. Lasota, Asymptotic decomposition of Markov operators, Bull. Polish Acad. Sci. Math., 35 (1987), 321-327.
|
[21]
|
A. Lasota, T. Y. Li and J. A. Yorke, Asymptotic periodicity of the iterates of Markov operators, Trans. Amer. Math. Soc., 286 (1984), 751-764.
doi: 10.1090/S0002-9947-1984-0760984-4.
|
[22]
|
A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, Applied Mathematical Sciences, 97. Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-4286-4.
|
[23]
|
A. Lasota and M. C. Mackey, Noise and statistical periodicity, Phys. D, 28 (1987), 143-154.
doi: 10.1016/0167-2789(87)90125-4.
|
[24]
|
A. Lasota and J. A. Yorke, Statistical periodicity of deterministic systems, Časopis pro pěstování matematiky, 111 (1986), 1–13.
doi: 10.21136/CPM.1986.118256.
|
[25]
|
J. Losson and M. C. Mackey, Coupled map lattices as models of deterministic and stochastic differential delay equations, Phys. Rev. E (3), 52 (1995), 115-128.
doi: 10.1103/PhysRevE.52.115.
|
[26]
|
R. Lozi, Un attracteur étrange (?) du type attracteur de Hénon, Le Journal de Physique Colloques, 39 (1978), C5–9.
doi: 10.1051/jphyscol:1978505.
|
[27]
|
M. C. Mackey, Time's Arrow: The Origins of Thermodynamic Behaviour, Springer-Verlag, Berlin, New York, Heidelberg, 1992.
doi: 10.1007/978-1-4613-9524-9.
|
[28]
|
J. Nagumo and S. Sato, On a response characteristic of a mathematical neuron model, Kybernetik, 10 (1972), 155-164.
doi: 10.1007/BF00290514.
|
[29]
|
F. Nakamura, Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 2457-2473.
doi: 10.3934/dcdsb.2018055.
|
[30]
|
H. E. Nusse and J. A. Yorke, Border-collision bifurcations including "period two to period three" for piecewise smooth systems, Phys. D, 57 (1992), 39-57.
doi: 10.1016/0167-2789(92)90087-4.
|
[31]
|
N. Provatas and M. C. Mackey, Asymptotic periodicity and banded chaos, Phys. D, 53 (1991), 295-318.
doi: 10.1016/0167-2789(91)90067-J.
|
[32]
|
N. Provatas and M. C. Mackey, Noise-induced asymptotic periodicity in a piecewise linear map, J. Statist. Phys., 63 (1991), 585-612.
doi: 10.1007/BF01029201.
|
[33]
|
H. Shigematsu, H. Mori, T. Yoshida and H. Okamoto, Analytic study of power spectra of the tent maps near band-splitting transitions, J. Statist. Phys., 30 (1983), 649-679.
doi: 10.1007/BF01009682.
|
[34]
|
I. Sushko and L. Gardini, Center bifurcation for two-dimensional border collision normal form, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 1029-1050.
doi: 10.1142/S0218127408020823.
|
[35]
|
G. Światek, Rational rotation numbers for maps of the circle, Comm. Math. Phys., 119 (1988), 109-128.
doi: 10.1007/BF01218263.
|
[36]
|
H. Toyokawa, $\sigma$-finite invariant densities for eventually conservative Markov operators, Discrete Contin. Dyn. Syst., 40 (2020), 2641-2669.
doi: 10.3934/dcds.2020144.
|
[37]
|
G. Vitali, Sulle funzione integrali, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 40 (1904/1905), 1021-1034.
|
[38]
|
T. Yoshida, H. Mori and H. Shigematsu, Analytic study of chaos of the tent map: Band structures, power spectra, and critical behaviors, J. Statist. Phys., 31 (1983), 279-308.
doi: 10.1007/BF01011583.
|