[1]
|
T. Bountis, H. Segur and F. Vivaldi, Integrable Hamiltonian systems and the Painlevé property, Phys. Rev. A (3), 25 (1982), 1257-1264.
doi: 10.1103/PhysRevA.25.1257.
|
[2]
|
Y. F. Chang, M. Tabor and J. Weiss, Analytic structure of the Hénon-Heiles Hamiltonian in integrable and nonintegrable regimes, J. Math. Phys., 23 (1982), 531-538.
doi: 10.1063/1.525389.
|
[3]
|
A. Cima and J. Llibre, Algebraic and topological classification of the homogeneous cubic vector fields in the plane, J. Math. Anal. Appl., 147 (1990), 420-448.
doi: 10.1016/0022-247X(90)90359-N.
|
[4]
|
G. Duval and A. J. Maciejewski, Jordan obstruction to the integrability of Hamiltonian systems with homogeneous potentials, Ann. Inst. Fourier (Grenoble), 59 (2009), 2839-2890.
doi: 10.5802/aif.2510.
|
[5]
|
G. Duval and A. J. Maciejewski, Integrability of Hamiltonian systems with homogeneous potentials of degrees $\pm 2$. An application of higher order variational equations, Discrete Contin. Dyn. Syst., 34 (2014), 4589-4615.
doi: 10.3934/dcds.2014.34.4589.
|
[6]
|
G. Duval and A. J. Maciejewski, Integrability of potentials of degree $k\neq\pm 2$. Second order variational equations between Kolchin solvability and Abelianity, Discrete Contin. Dyn. Syst., 35 (2015), 1969-2009.
doi: 10.3934/dcds.2015.35.1969.
|
[7]
|
A. Goriely, Integrability and Nonintegrability of Dynamical Systems, vol. 19 of Advanced Series in Nonlinear Dynamics, World Scientific Publishing Co., Inc., River Edge, NJ, 2001.
doi: 10.1142/9789812811943.
|
[8]
|
B. Grammaticos, B. Dorizzi and A. Ramani, Integrability of Hamiltonians with third- and fourth-degree polynomial potentials, J. Math. Phys., 24 (1983), 2289-2295.
doi: 10.1063/1.525976.
|
[9]
|
L. S. Hall, A theory of exact and approximate configurational invariants, Phys. D, 8 (1983), 90-116.
doi: 10.1016/0167-2789(83)90312-3.
|
[10]
|
J. Hietarinta, Direct methods for the search of the second invariant, Phys. Rep., 147 (1987), 87-154.
doi: 10.1016/0370-1573(87)90089-5.
|
[11]
|
J. Llibre, A. Mahdi and C. Valls, Polynomial integrability of the Hamiltonian systems with homogeneous potential of degree $-3$, Phys. D, 240 (2011), 1928-1935.
doi: 10.1016/j.physd.2011.09.003.
|
[12]
|
J. Llibre, A. Mahdi and C. Valls, Analytic integrability of Hamiltonian systems with a homogeneous polynomial potential of degree 4, J. Math. Phys., 52 (2011), 012702, 9 pp.
doi: 10.1063/1.3544473.
|
[13]
|
J. Llibre, A. Mahdi and C. Valls, Polynomial integrability of the Hamiltonian systems with homogeneous potential of degree $-2$, Phys. Lett. A, 375 (2011), 1845-1849.
doi: 10.1016/j.physleta.2011.03.042.
|
[14]
|
J. Llibre and C. Valls, Darboux integrability of 2-dimensional Hamiltonian systems with homogenous potentials of degree 3, J. Math. Phys., 55 (2014), 033507, 12 pp.
doi: 10.1063/1.4868701.
|
[15]
|
J. Llibre and C. Valls, On the integrability of Hamiltonian systems with $d$ degrees of freedom and homogenous polynomial potential of degree $n$, Commun. Contemp. Math., 20 (2018), 1750045, 9 pp.
doi: 10.1142/S0219199717500456.
|
[16]
|
A. J. Maciejewski and M. Przybylska, All meromorphically integrable 2D Hamiltonian systems with homogeneous potential of degree 3, Phys. Lett. A, 327 (2004), 461-473.
doi: 10.1016/j.physleta.2004.05.042.
|
[17]
|
A. J. Maciejewski and M. Przybylska, Darboux points and integrability of Hamiltonian systems with homogeneous polynomial potential, J. Math. Phys., 46 (2005), 062901, 33 pp.
doi: 10.1063/1.1917311.
|
[18]
|
J. J. Morales Ruiz, Differential Galois theory and non-integrability of Hamiltonian systems, vol. 179 of Progress in Mathematics, Birkhäuser Verlag, Basel, 1999.
doi: 10.1007/978-3-0348-8718-2.
|
[19]
|
A. Ramani, B. Dorizzi and B. Grammaticos, Painlevé conjecture revisited, Phys. Rev. Lett., 49 (1982), 1539-1541.
doi: 10.1103/PhysRevLett.49.1539.
|
[20]
|
H. Yoshida, A criterion for the nonexistence of an additional integral in Hamiltonian systems with a homogeneous potential, Phys. D, 29 (1987), 128-142.
doi: 10.1016/0167-2789(87)90050-9.
|
[21]
|
H. Yoshida, A new necessary condition for the integrability of Hamiltonian systems with a two-dimensional homogeneous potential, Phys. D, 128 (1999), 53-69.
doi: 10.1016/S0167-2789(98)00313-3.
|
[22]
|
X. Zhang, Integrability of Dynamical Systems: Algebra and Analysis, Developments in Mathematics vol. 47, Springer Natural, Singapore, 2017.
doi: 10.1007/978-981-10-4226-3.
|
[23]
|
S. L. Ziglin, Bifurcation of solutions and the nonexistence of first integrals in Hamiltonian mechanics. I, Funktsional. Anal. i Prilozhen., 16 (1982), 30–41, 96.
|
[24]
|
S. L. Ziglin, Bifurcation of solutions and the nonexistence of first integrals in Hamiltonian mechanics. II, Funktsional. Anal. i Prilozhen., 17 (1983), 8-23.
|