\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Exponential stability of axially moving Kirchhoff-beam systems with nonlinear boundary damping and disturbance

  • * Corresponding author: Yi Cheng

    * Corresponding author: Yi Cheng 

This work were partially supported by Natural Science Foundation of Liaoning Province (No. 2020-MS-290), Liaoning Natural Fund Guidance Plan (No. 2019-ZD-0508) and Young Science and Technology Talents "Nursery Seedling" Project of Liaoning Provincial Department of Education (No, LQ2019008)

Abstract Full Text(HTML) Related Papers Cited by
  • This paper examines the stabilization problem of the axially moving Kirchhoff beam. Under the nonlinear damping criterion established by the slope-restricted condition, the existence and uniqueness of solutions of the closed-loop system equipped with nonlinear time-delay disturbance at the boundary is investigated via the Faedo-Galerkin approximation method. Furthermore, the solution is continuously dependent on initial conditions. Then the exponential stability of the closed-loop system is established by the direct Lyapunov method, where a novel energy function is constructed.

    Mathematics Subject Classification: Primary: 45K05, 35B45, 93B52; Secondary: 35Q93, 93D15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] J. M. Ball, Initial boundary value problem for an extensible beam, J. Math. Analys. Appl., 42 (1973), 61-90.  doi: 10.1016/0022-247X(73)90121-2.
    [2] L.-Q. Chen and W. Zhang, Adaptive vibration reduction of an axially moving string via a tensioner, Internat. J. Mechan. Sci., 48 (2006), 1409-1415.  doi: 10.1016/j.ijmecsci.2006.07.004.
    [3] H. Ding and L.-Q. Chen, Galerkin methods for natural frequencies of high-speed axially moving beams, Journal of Sound and Vibration, 329 (2010), 3484-3494.  doi: 10.1016/j.jsv.2010.03.005.
    [4] R.-F. FungJ.-H. Chou and Y.-L. Kuo, Optimal boundary control of an axially moving material system, J. Dyn. Syst., 124 (2002), 55-61.  doi: 10.1115/1.1435364.
    [5] S. S. GeS. Zhang and W. He, Vibration control of an Euler-Bernoulli beam under unknown spatiotemporally varying disturbance, Internat. J. Contr., 84 (2011), 947-960.  doi: 10.1080/00207179.2011.584197.
    [6] B.-Z. Guo and W. Guo, Adaptive stabilization for a Kirchhoff-type nonlinear beam under boundary output feedback control, Nonlinear Anal., 66 (2007), 427-441.  doi: 10.1016/j.na.2005.11.037.
    [7] B.-Z. Guo and K.-Y. Yang, Dynamic stabilization of an Euler-Bernoulli beam equation with time delay in boundary observation, Automatica J. IFAC, 45 (2009), 1468-1475.  doi: 10.1016/j.automatica.2009.02.004.
    [8] W. GuoY. Chen and H. Feng, Output feedback stabilization for a Kirchhoff-type nonlinear beam with general corrupted boundary observation, Internat. J. Robust Nonlinear Control, 27 (2017), 3280-3295.  doi: 10.1002/rnc.3740.
    [9] W. M. Haddad and V. Kapila, Absolute stability criteria for multiple slope-restricted monotonic nonlinearities, IEEE Trans. Automat. Control, 40 (1995), 361-365.  doi: 10.1109/9.341811.
    [10] Z.-J. Han and G.-Q. Xu, Output-based stabilization of Euler-Bernoulli beam with time-delay in boundary input, IMA J. Math. Control Inform., 31 (2013), 533-550.  doi: 10.1093/imamci/dnt030.
    [11] S. W. Hansen and B.-Y. Zhang, Boundary control of a linear Thermoelastic beam, J. Math. Analys. Appl., 210 (1997), 182-205.  doi: 10.1006/jmaa.1997.5437.
    [12] H. K. Khalil, Nonlinear Systems, Upper Saddle River, 2002.
    [13] T. KobayashiM. Oya and N. Takagi, Adaptive stabilization of a Kirchhoff's nonlinear beam with output disturbances, Nonlinear Anal., 71 (2009), 4798-4812.  doi: 10.1016/j.na.2009.03.056.
    [14] Y. LiG. Xu and Z. Han, Feedback stabilisation of an Euler-Bernoulli beam with the boundary time-delay disturbance, Internat. J. Control, 91 (2018), 1835-1847.  doi: 10.1080/00207179.2017.1333154.
    [15] J. Liang, Y. Chen and B. Guo, A new boundary control method for beam equation with delayed boundary measurement using modified smith predictors, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), (2003), 809–814. doi: 10.1109/CDC.2003.1272665.
    [16] Z.-H. Luo, B.-Z. Guo and O. Morgül, Stability and Stabilization of Infinite Dimensional Systems with Applications, Springer-Verlag London, Ltd., London, 1999. doi: 10.1007/978-1-4471-0419-3.
    [17] A. Mokhtari and H. R. Mirdamadi, Study on vibration and stability of an axially translating viscoelastic Timoshenko beam: Non-transforming spectral element analysis, Appl. Math. Mod., 56 (2018), 342-358.  doi: 10.1016/j.apm.2017.12.007.
    [18] Ö. Morgül, On the stabilization and stability robustness against small delays of some damped wave equations, IEEE Trans. Automat. Control, 40 (1995), 1626-1630.  doi: 10.1109/9.412634.
    [19] S. P. NagarkattiF. ZhangB. T. CosticD. M. Dawson and C. D. Rahn, Speed tracking and transverse vibration control of an axially accelerating web, Mech. Syst. Signal Proc., 16 (2002), 337-356.  doi: 10.1006/mssp.2000.1342.
    [20] Y. F. Shang and G. Q. Xu, Stabilization of an Euler-Bernoulli beam with input delay in the boundary control, Syst. Control Lett., 61 (2012), 1069-1078.  doi: 10.1016/j.sysconle.2012.07.012.
    [21] S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars, J. Appl. Mech. ASME, 17 (1950), 35-36.  doi: 10.1115/1.4010053.
    [22] K.-Y. Yang, J.-J. Li and J. Zhang, Stabilization of Euler-Bernoulli beam equations with variable coefficients under delayed boundary output feedback, Electron. J. Differential Equations, 75 (2015), 14 pp.
  • 加载中
SHARE

Article Metrics

HTML views(661) PDF downloads(442) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return