This paper examines the stabilization problem of the axially moving Kirchhoff beam. Under the nonlinear damping criterion established by the slope-restricted condition, the existence and uniqueness of solutions of the closed-loop system equipped with nonlinear time-delay disturbance at the boundary is investigated via the Faedo-Galerkin approximation method. Furthermore, the solution is continuously dependent on initial conditions. Then the exponential stability of the closed-loop system is established by the direct Lyapunov method, where a novel energy function is constructed.
Citation: |
[1] |
J. M. Ball, Initial boundary value problem for an extensible beam, J. Math. Analys. Appl., 42 (1973), 61-90.
doi: 10.1016/0022-247X(73)90121-2.![]() ![]() ![]() |
[2] |
L.-Q. Chen and W. Zhang, Adaptive vibration reduction of an axially moving string via a tensioner, Internat. J. Mechan. Sci., 48 (2006), 1409-1415.
doi: 10.1016/j.ijmecsci.2006.07.004.![]() ![]() |
[3] |
H. Ding and L.-Q. Chen, Galerkin methods for natural frequencies of high-speed axially moving beams, Journal of Sound and Vibration, 329 (2010), 3484-3494.
doi: 10.1016/j.jsv.2010.03.005.![]() ![]() |
[4] |
R.-F. Fung, J.-H. Chou and Y.-L. Kuo, Optimal boundary control of an axially moving material system, J. Dyn. Syst., 124 (2002), 55-61.
doi: 10.1115/1.1435364.![]() ![]() |
[5] |
S. S. Ge, S. Zhang and W. He, Vibration control of an Euler-Bernoulli beam under unknown spatiotemporally varying disturbance, Internat. J. Contr., 84 (2011), 947-960.
doi: 10.1080/00207179.2011.584197.![]() ![]() ![]() |
[6] |
B.-Z. Guo and W. Guo, Adaptive stabilization for a Kirchhoff-type nonlinear beam under boundary output feedback control, Nonlinear Anal., 66 (2007), 427-441.
doi: 10.1016/j.na.2005.11.037.![]() ![]() ![]() |
[7] |
B.-Z. Guo and K.-Y. Yang, Dynamic stabilization of an Euler-Bernoulli beam equation with time delay in boundary observation, Automatica J. IFAC, 45 (2009), 1468-1475.
doi: 10.1016/j.automatica.2009.02.004.![]() ![]() ![]() |
[8] |
W. Guo, Y. Chen and H. Feng, Output feedback stabilization for a Kirchhoff-type nonlinear beam with general corrupted boundary observation, Internat. J. Robust Nonlinear Control, 27 (2017), 3280-3295.
doi: 10.1002/rnc.3740.![]() ![]() ![]() |
[9] |
W. M. Haddad and V. Kapila, Absolute stability criteria for multiple slope-restricted monotonic nonlinearities, IEEE Trans. Automat. Control, 40 (1995), 361-365.
doi: 10.1109/9.341811.![]() ![]() ![]() |
[10] |
Z.-J. Han and G.-Q. Xu, Output-based stabilization of Euler-Bernoulli beam with time-delay in boundary input, IMA J. Math. Control Inform., 31 (2013), 533-550.
doi: 10.1093/imamci/dnt030.![]() ![]() ![]() |
[11] |
S. W. Hansen and B.-Y. Zhang, Boundary control of a linear Thermoelastic beam, J. Math. Analys. Appl., 210 (1997), 182-205.
doi: 10.1006/jmaa.1997.5437.![]() ![]() ![]() |
[12] |
H. K. Khalil, Nonlinear Systems, Upper Saddle River, 2002.
![]() |
[13] |
T. Kobayashi, M. Oya and N. Takagi, Adaptive stabilization of a Kirchhoff's nonlinear beam with output disturbances, Nonlinear Anal., 71 (2009), 4798-4812.
doi: 10.1016/j.na.2009.03.056.![]() ![]() ![]() |
[14] |
Y. Li, G. Xu and Z. Han, Feedback stabilisation of an Euler-Bernoulli beam with the boundary time-delay disturbance, Internat. J. Control, 91 (2018), 1835-1847.
doi: 10.1080/00207179.2017.1333154.![]() ![]() ![]() |
[15] |
J. Liang, Y. Chen and B. Guo, A new boundary control method for beam equation with delayed boundary measurement using modified smith predictors, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), (2003), 809–814.
doi: 10.1109/CDC.2003.1272665.![]() ![]() |
[16] |
Z.-H. Luo, B.-Z. Guo and O. Morgül, Stability and Stabilization of Infinite Dimensional Systems with Applications, Springer-Verlag London, Ltd., London, 1999.
doi: 10.1007/978-1-4471-0419-3.![]() ![]() ![]() |
[17] |
A. Mokhtari and H. R. Mirdamadi, Study on vibration and stability of an axially translating viscoelastic Timoshenko beam: Non-transforming spectral element analysis, Appl. Math. Mod., 56 (2018), 342-358.
doi: 10.1016/j.apm.2017.12.007.![]() ![]() ![]() |
[18] |
Ö. Morgül, On the stabilization and stability robustness against small delays of some damped wave equations, IEEE Trans. Automat. Control, 40 (1995), 1626-1630.
doi: 10.1109/9.412634.![]() ![]() ![]() |
[19] |
S. P. Nagarkatti, F. Zhang, B. T. Costic, D. M. Dawson and C. D. Rahn, Speed tracking and transverse vibration control of an axially accelerating web, Mech. Syst. Signal Proc., 16 (2002), 337-356.
doi: 10.1006/mssp.2000.1342.![]() ![]() |
[20] |
Y. F. Shang and G. Q. Xu, Stabilization of an Euler-Bernoulli beam with input delay in the boundary control, Syst. Control Lett., 61 (2012), 1069-1078.
doi: 10.1016/j.sysconle.2012.07.012.![]() ![]() ![]() |
[21] |
S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars, J. Appl. Mech. ASME, 17 (1950), 35-36.
doi: 10.1115/1.4010053.![]() ![]() ![]() |
[22] |
K.-Y. Yang, J.-J. Li and J. Zhang, Stabilization of Euler-Bernoulli beam equations with variable coefficients under delayed boundary output feedback, Electron. J. Differential Equations, 75 (2015), 14 pp.
![]() ![]() |