This paper is concerned with a predator-prey model with stage structure for the predator, with a cross-diffusion term modeling the effect that mature predators move toward the direction of gradient of prey. It is first shown that the corresponding Neumann initial-boundary value problem in an $ n $-dimensional bounded smooth domain possesses a unique global classical solution which is uniformly-in-time bounded for the weak cross-diffusion. It is further shown that, in the presence of cross-diffusion, the model admits threshold-type dynamics in terms of the cross-diffusion coefficient; that is, the homogenous steady state keeps stability for weak attractive prey-taxis, while the stationary patterns will occur for strong attractive prey-taxis. This implies that such cross diffusion does contribute to the rich dynamics of predator-prey model with stage structure for predators.
Citation: |
[1] |
H. Amann, Dynamic theory of quasilinear parabolic equations Ⅱ.Reaction-diffusion systems, Differential Integral Equations, 3 (1990), 13-75.
![]() ![]() |
[2] |
H. Amman, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces Differential Operators and Nonlinear Analysis, 133 (1993), 9-126.
doi: 10.1007/978-3-663-11336-2_1.![]() ![]() ![]() |
[3] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Towards a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Mathe. Models Methods Appl. Sci., 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X.![]() ![]() ![]() |
[4] |
N. Bellomo, K. J. Painter, Y. Tao and M. Winkler, Occurrence vs. absence of taxis-driven instabilities in a May–Nowak model for virus infection, SIAM J. Appl. Math, 79 (2019), 1990-2010.
doi: 10.1137/19M1250261.![]() ![]() ![]() |
[5] |
E. X. Dejesus and C. Kaufman, Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equation, Phys. Rev. A, 35 (1987), 5288-5290.
doi: 10.1103/PhysRevA.35.5288.![]() ![]() ![]() |
[6] |
A. K. Drangeid, The principle of linearized stability for quasilinear parabolic evolution equations, Nonlinear Anal., 13 (1989), 1091-1113.
doi: 10.1016/0362-546X(89)90097-7.![]() ![]() ![]() |
[7] |
Y. H. Du, P. Y. H. Pang and M. X. Wang, Qualitative analysis of a prey-predator model with stage structure for the predator, SIAM J. Appl. Math., 69 (2008), 596-620.
doi: 10.1137/070684173.![]() ![]() ![]() |
[8] |
X. X. Guo and J. F. Wang, Dynamics and pattern formations in diffusive predator-prey models with two prey-taxis, Math. Methods Appl. Sci., 42 (2019), 4197-4212.
doi: 10.1002/mma.5639.![]() ![]() ![]() |
[9] |
X. He and S. N. Zheng, Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis, Appl. Math. Lett., 49 (2015), 73-77.
doi: 10.1016/j.aml.2015.04.017.![]() ![]() ![]() |
[10] |
D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.
doi: 10.1016/j.jde.2004.10.022.![]() ![]() ![]() |
[11] |
W. J$\ddot{a}$ger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.
doi: 10.1090/S0002-9947-1992-1046835-6.![]() ![]() ![]() |
[12] |
H. Y. Jin and Z. A. Wang, Global stability of prey-taxis systems, J. Differential Equations, 262 (2017), 1257-1290.
doi: 10.1016/j.jde.2016.10.010.![]() ![]() ![]() |
[13] |
P. Kareiva and G. Odell, Swarms of predators exhibit prey-taxis if individual predators use area-restricted search, American Naturalist, 130 (1987), 233-270.
![]() |
[14] |
J. M. Lee, T. Hillen and M. A. Lewis, Pattern formation in prey-taxis systems, J. Biol. Dyn., 3 (2009), 551-573.
doi: 10.1080/17513750802716112.![]() ![]() ![]() |
[15] |
P. Liu, J. P. Shi and Z. A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2597-2625.
doi: 10.3934/dcdsb.2013.18.2597.![]() ![]() ![]() |
[16] |
L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115-162.
![]() ![]() |
[17] |
G. Simonett, Center manifolds for quasilinear reaction-diffusion systems, Differential Integral Equations, 8 (1995), 753-796.
![]() ![]() |
[18] |
Y. S. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonlinear Anal. Real World Appl., 11 (2010), 2056-2064.
doi: 10.1016/j.nonrwa.2009.05.005.![]() ![]() ![]() |
[19] |
Y. S. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differential Equations, 252 (2012), 2520-2543.
doi: 10.1016/j.jde.2011.07.010.![]() ![]() ![]() |
[20] |
Y. S. Tao and M. Winkler, Large time behavior in a forager-exploiter model with different taxis strategies for two groups in search of food, Math. Models Methods Appl. Sci., 29 (2019), 2151-2182.
doi: 10.1142/S021820251950043X.![]() ![]() ![]() |
[21] |
J. F. Wang, S. N. Wu and J. P. Shi, Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 1273-1289.
doi: 10.3934/dcdsb.2020162.![]() ![]() ![]() |
[22] |
J. P. Wang and M. X. Wang, Global bounded solution of the higher-dimensional forager-exploiter model with/without growth sources, Math. Models Methods Appl. Sci., 30 (2020), 1297-1323.
doi: 10.1142/S0218202520500232.![]() ![]() ![]() |
[23] |
K. Wang, Q. Wang and F. Yu, Stationary and time periodic patterns of two-predator and one-prey systems with prey-taxis, Discrete Contin. Dyn. Syst., 37 (2017), 505-543.
doi: 10.3934/dcds.2017021.![]() ![]() ![]() |
[24] |
X. L. Wang, W. D. Wang and G. H. Zhang, Global bifurcation of solutions for a predator-prey model with prey-taxis, Math. Methods Appl. Sci., 38 (2015), 431-443.
doi: 10.1002/mma.3079.![]() ![]() ![]() |
[25] |
M. Winkler, Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., 283 (2010), 1644-1673.
doi: 10.1002/mana.200810838.![]() ![]() ![]() |
[26] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008.![]() ![]() ![]() |
[27] |
M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.
doi: 10.1080/03605300903473426.![]() ![]() ![]() |
[28] |
M. Winkler, Global large-data solutions in a chemotaxis-(Navier-) Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.
doi: 10.1080/03605302.2011.591865.![]() ![]() ![]() |
[29] |
M. Winkler, Asymptotic homogenization in a three-dimensional nutrient taxis system involving food-supported proliferation, J. Differential Equations, 263 (2017), 4826-4869.
doi: 10.1016/j.jde.2017.06.002.![]() ![]() ![]() |
[30] |
S. N. Wu, J. P. Shi and B. Y. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differential Equations, 260 (2016), 5847-5874.
doi: 10.1016/j.jde.2015.12.024.![]() ![]() ![]() |
[31] |
T. Xiang, Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka-Volterra kinetics, Nonlinear Anal. Real World Appl., 39 (2018), 278-299.
doi: 10.1016/j.nonrwa.2017.07.001.![]() ![]() ![]() |
Change of
Spatial heterogenous and time-periodic patterns for