[1]
|
R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence, J. Theoret. Biol., 139 (1989), 311-326.
doi: 10.1016/S0022-5193(89)80211-5.
|
[2]
|
N. Bacaër, A Short History of Mathematical Population Dynamics, Springer Verlag, New York, 2011.
doi: 10.1007/978-0-85729-115-8.
|
[3]
|
J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Animal Ecol., 44 (1975), 331-340.
doi: 10.2307/3866.
|
[4]
|
L. Berec, Impacts of foraging facilitation among predators on predator-prey dynamics, Bull. Math. Biol., 72 (2010), 94-121.
doi: 10.1007/s11538-009-9439-1.
|
[5]
|
J. Carr, Applications of Center Manifold Theory, Springer, New York, 1981.
|
[6]
|
X. Chen and W. Zhang, Decomposition of algebraic sets and applications to weak centers of cubic systems, J. Comput. Appl. Math., 232 (2009), 565-581.
doi: 10.1016/j.cam.2009.06.029.
|
[7]
|
C. Cosner, D. L. DeAngelis, J. S. Ault and D. B. Olson, Effects of spatial grouping on the functional response of predators, Theor. Popul. Biol., 56 (1999), 65-75.
doi: 10.1006/tpbi.1999.1414.
|
[8]
|
D. L. DeAngelis, R. A. Goldstein and R. V. O'Neill, A model for trophic interaction, Ecology, 56 (1975), 881-892.
doi: 10.2307/1936298.
|
[9]
|
Y.-J. Gong and J.-C. Huang, Bogdanov-Takens bifurcation in a Leslie-Gower predator-prey model with prey harvesting, Acta Math. Appl. Sin. Engl. Ser., 30 (2014), 239-244.
doi: 10.1007/s10255-014-0279-x.
|
[10]
|
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer, New York, 1983.
doi: 10.1007/978-1-4612-1140-2.
|
[11]
|
R. P. Gupta, M. Banerjee and P. Chandra, Bifurcation analysis and control of Leslie-Gower predator-prey model with Michaelis-Menten type prey-harvesting, Differ. Equ. Dyn. Syst., 20 (2012), 339-366.
doi: 10.1007/s12591-012-0142-6.
|
[12]
|
R. P. Gupta, P. Chandra and M. Banerjee, Dynamical complexity of a prey-predator model with nonlinear predator harvesting, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 423-443.
doi: 10.3934/dcdsb.2015.20.423.
|
[13]
|
M. P. Hassell and G. C. Varley, New inductive population model for insect parasites and its bearing on biological control, Nature, 223 (1969), 1133-1137.
doi: 10.1038/2231133a0.
|
[14]
|
C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Ent. Soc. Can., 97 (1965), 5-60.
doi: 10.4039/entm9745fv.
|
[15]
|
D. Hu and H. Cao, Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting, Nonlinear Anal. Real World Appl., 33 (2017), 58-82.
doi: 10.1016/j.nonrwa.2016.05.010.
|
[16]
|
J. Huang, Y. Gong and J. Chen, Multiple bifurcations in a predator-prey system of Holling and Leslie type with constant-yield prey harvesting, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350164, 24 pp.
doi: 10.1142/S0218127413501642.
|
[17]
|
J. Huang, Y. Gong and S. Ruan, Bifurcation analysis in a predator-prey model with constant-yield predator harvesting, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2101-2121.
doi: 10.3934/dcdsb.2013.18.2101.
|
[18]
|
S. B. Hsu and T. W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55 (1995), 763-783.
doi: 10.1137/S0036139993253201.
|
[19]
|
R. Kimun, K. Wonlyul and H. Mainul, Bifurcation analysis in a predator-prey system with a functional response increasing in both predator and prey densities, Nonlinear Dynam., 94 (2018), 1639-1656.
|
[20]
|
L. Kong and C. Zhu, Bogdanov-Takens bifurcations of codimensions 2 and 3 in a Leslie-Gower predator-prey model with Michaelis-Menten-type prey harvesting, Math. Meth. Appl. Sci., 40 (2017), 6715-6731.
doi: 10.1002/mma.4484.
|
[21]
|
A. Korobeinikov, A Lyapunov function for Leslie-Gower predator-prey models, Appl. Math. Lett., 14 (2001), 697-699.
doi: 10.1016/S0893-9659(01)80029-X.
|
[22]
|
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, New York, 1995.
doi: 10.1007/978-1-4757-2421-9.
|
[23]
|
K. Q. Lan and C. R. Zhu, Phase portraits, Hopf bifurcations and limit cycles of the Holling-Tanner models for predator-prey interactions, Nonlinear Anal. Real World Appl., 12 (2011), 1961-1973.
doi: 10.1016/j.nonrwa.2010.12.012.
|
[24]
|
P. H. Leslie and J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219-234.
doi: 10.1093/biomet/47.3-4.219.
|
[25]
|
A. Lotka, Elements of Physical Biology, Williams and Williams, Baltimore, 1925.
|
[26]
|
R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, New Jersey, 1973.
|
[27]
|
R. M. May, J. R. Beddington, C. W. Clark, S. J. Holt and R. M. Laws, Management of multispecies fisheries, Science, 205 (1979), 267-277.
doi: 10.1126/science.205.4403.267.
|
[28]
|
S. Pal, N. Pal, S. Samanta and J. Chattopadhyay, Fear effect in prey and hunting cooperation among predators in a Leslie-Gower model, Math. Biosci. Eng., 16 (2019), 5146-5179.
doi: 10.3934/mbe.2019258.
|
[29]
|
E. Sáez and E. González-Olivares, Dynamics of a predator-prey model, SIAM J. Appl. Math., 59 (1999), 1867-1878.
doi: 10.1137/S0036139997318457.
|
[30]
|
D. Scheel and C. Packer, Group hunting behavior of lions: A search for cooperation, Anim. Behav., 41 (1991), 697-709.
doi: 10.1016/S0003-3472(05)80907-8.
|
[31]
|
G. T. Skalski and J. F. Gilliam, Functional responses with predator interference: Viable alternatives to the Holling type II model, Ecology, 82 (2001), 3083-3092.
|
[32]
|
M. Teixeira Alves and F. M. Hilker, Hunting cooperation and Allee effects in predators, J. Theor. Biol., 419 (2017), 13-22.
doi: 10.1016/j.jtbi.2017.02.002.
|
[33]
|
P. Turchin, Complex Population Dynamics: A Theoretical/Empirical Synthesis, Princeton University Press, New Jersey, 2003.
|
[34]
|
V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 119 (1927), 12-13.
doi: 10.1038/119012b0.
|
[35]
|
D. Xiao and L. S. Jennings, Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting, SIAM J. Appl. Math., 65 (2005), 737-753.
doi: 10.1137/S0036139903428719.
|
[36]
|
D. Xiao, W. Li and M. Han, Dynamics in a ratio-dependent predator-prey model with predator harvesting, J. Math. Anal. Appl., 324 (2006), 14-29.
doi: 10.1016/j.jmaa.2005.11.048.
|
[37]
|
D. Xiao and S. Ruan, Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting, Fields Ins. Commun., 21 (1999), 493-506.
|
[38]
|
Y. Yao, Dynamics of a prey-predator system with foraging facilitation in predators, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 30 (2020), 2050009, 24 pp.
doi: 10.1142/S0218127420500091.
|
[39]
|
P. Ye and D. Wu, Dynamics of a prey-predator system with foraging facilitation in predators, Impacts of strong Allee effect and hunting cooperation for a Leslie-Gower predator-prey system, Chinese J. Phys., 68 (2020), 49-64.
doi: 10.1016/j.cjph.2020.07.021.
|
[40]
|
Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, Qualitative Theory of Differential Equations, American Mathematical Society, Providence, RI, 1992.
|
[41]
|
C. Zhu and K. Lan, Phase portraits, Hopf bifurcations and limit cycles of Leslie-Gower predator-prey systems with harvesting rates, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 289-306.
doi: 10.3934/dcdsb.2010.14.289.
|