doi: 10.3934/dcdsb.2021253
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

The existence of time-dependent attractor for wave equation with fractional damping and lower regular forcing term

School of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China

* Corresponding author

Received  April 2021 Revised  August 2021 Early access October 2021

Fund Project: Luo is supported by NSF grant(11961059) and "Innovation Star" of Gansu Provincial Department of Education (2021CXZX-206)

We investigate the well-posedness and longtime dynamics of fractional damping wave equation whose coefficient $ \varepsilon $ depends explicitly on time. First of all, when $ 1\leq p\leq p^{\ast\ast} = \frac{N+2}{N-2}\; (N\geq3) $, we obtain existence of solution for the fractional damping wave equation with time-dependent decay coefficient in $ H_{0}^{1}(\Omega)\times L^{2}(\Omega) $. Furthermore, when $ 1\leq p<p^{*} = \frac{N+4\alpha}{N-2} $, $ u_{t} $ is proved to be of higher regularity in $ H^{1-\alpha}\; (t>\tau) $ and show that the solution is quasi-stable in weaker space $ H^{1-\alpha}\times H^{-\alpha} $. Finally, we get the existence and regularity of time-dependent attractor.

Citation: Xudong Luo, Qiaozhen Ma. The existence of time-dependent attractor for wave equation with fractional damping and lower regular forcing term. Discrete and Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021253
References:
[1]

J. ArrietaA. N. Carvalho and J. K. Hale, A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations, 17 (1992), 841-866.  doi: 10.1080/03605309208820866.

[2]

A. V. Babin and M. I. Visik, Regular attractors of semigroups and evolution equations, J. Math. Pures Appl., 62 (1983), 441-491. 

[3]

S. M. BruschiA. N. CarvalhoJ. W. Cholewa and T. Dlotko, Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations, J. Dynam. Differential Equations, 18 (2006), 767-814.  doi: 10.1007/s10884-006-9023-4.

[4]

V. V. ChepyzhovM. Conti and V. Pata, A minimal approach to the theory of global attractor, Discrete Contin. Dyn. Syst., 32 (2012), 2079-2088.  doi: 10.3934/dcds.2012.32.2079.

[5]

I. Chueshov and I. Lasiecka, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.

[6]

I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, Mem. Amer. Math. Soc. 2008.

[7]

I. Chueshov and I. Lasiecka, Attractors for second-order evolution equations with a nonlinear damping, J. Dynam. Differential Equations, 16 (2004), 469-512.  doi: 10.1007/s10884-004-4289-x.

[8]

M. Conti and V. Pata, On the time-dependent Cattaneo law in space dimension one, Appl. Math. Comput., 259 (2015), 32-44.  doi: 10.1016/j.amc.2015.02.039.

[9]

M. ContiV. Pata and R. Temam, Attractors for process on time-dependent space, application to wave equation, J. Differential Equations, 255 (2013), 1254-1277.  doi: 10.1016/j.jde.2013.05.013.

[10]

F. Di PlinioG. S. Duane and R. Temam, Time dependent attractor for the oscillon equation, Discrete Contin. Dyn. Syst., 29 (2011), 141-167.  doi: 10.3934/dcds.2011.29.141.

[11]

O. A. Ladyzhenskaya, Attractors of nonlinear evolution problems with dissipation, J. Sov. Math., 40 (1988), 632-640.  doi: 10.1007/BF01094189.

[12]

Q. MaJ. Wang and T. Liu, Time-dependent asymptotic behavior of the solution for wave equations with linear memory, Comput. Math. Appl., 76 (2018), 1372-1387.  doi: 10.1016/j.camwa.2018.06.031.

[13]

V. Pata and S. Zelik, A remark on the damped wave equation, Commun. Pure Appl. Anal., 5 (2006), 611-616.  doi: 10.3934/cpaa.2006.5.611.

[14]

V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), 1495-1506.  doi: 10.1088/0951-7715/19/7/001.

[15]

A. Savostianov, Strichartz estimates and smooth attractors for a sub-quintic wave equation with fractional damping in bounded domains, Adv. Differential Equations, 20 (2015), 495-530. 

[16]

A. Savostianov, Strichartz Estimates and Smooth Attractors of Dissipative Hyperbolic Equations, Doctoral dissertation, 2015.

[17]

J. Simon, Compact sets in the space $L^{p}(0, T;B), $, Ann. Mat. Pur. Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.

[18]

H. F. Smith and C. D. Sogge, Global strichartz estimates for non-trapping perturbations of the laplacian, Comm. Partial Differential Equations, 25 (2000), 2171-2183.  doi: 10.1080/03605300008821581.

[19]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, SpringerVerlag, New York, 1997.

[20]

Z. YangZ. Liu and N. Feng, Longtime behavior of the semilinear wave equation with gentle dissipation, Discrete Contin. Dyn. Syst., 36 (2016), 6557-6580.  doi: 10.3934/dcds.2016084.

show all references

References:
[1]

J. ArrietaA. N. Carvalho and J. K. Hale, A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations, 17 (1992), 841-866.  doi: 10.1080/03605309208820866.

[2]

A. V. Babin and M. I. Visik, Regular attractors of semigroups and evolution equations, J. Math. Pures Appl., 62 (1983), 441-491. 

[3]

S. M. BruschiA. N. CarvalhoJ. W. Cholewa and T. Dlotko, Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations, J. Dynam. Differential Equations, 18 (2006), 767-814.  doi: 10.1007/s10884-006-9023-4.

[4]

V. V. ChepyzhovM. Conti and V. Pata, A minimal approach to the theory of global attractor, Discrete Contin. Dyn. Syst., 32 (2012), 2079-2088.  doi: 10.3934/dcds.2012.32.2079.

[5]

I. Chueshov and I. Lasiecka, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.

[6]

I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, Mem. Amer. Math. Soc. 2008.

[7]

I. Chueshov and I. Lasiecka, Attractors for second-order evolution equations with a nonlinear damping, J. Dynam. Differential Equations, 16 (2004), 469-512.  doi: 10.1007/s10884-004-4289-x.

[8]

M. Conti and V. Pata, On the time-dependent Cattaneo law in space dimension one, Appl. Math. Comput., 259 (2015), 32-44.  doi: 10.1016/j.amc.2015.02.039.

[9]

M. ContiV. Pata and R. Temam, Attractors for process on time-dependent space, application to wave equation, J. Differential Equations, 255 (2013), 1254-1277.  doi: 10.1016/j.jde.2013.05.013.

[10]

F. Di PlinioG. S. Duane and R. Temam, Time dependent attractor for the oscillon equation, Discrete Contin. Dyn. Syst., 29 (2011), 141-167.  doi: 10.3934/dcds.2011.29.141.

[11]

O. A. Ladyzhenskaya, Attractors of nonlinear evolution problems with dissipation, J. Sov. Math., 40 (1988), 632-640.  doi: 10.1007/BF01094189.

[12]

Q. MaJ. Wang and T. Liu, Time-dependent asymptotic behavior of the solution for wave equations with linear memory, Comput. Math. Appl., 76 (2018), 1372-1387.  doi: 10.1016/j.camwa.2018.06.031.

[13]

V. Pata and S. Zelik, A remark on the damped wave equation, Commun. Pure Appl. Anal., 5 (2006), 611-616.  doi: 10.3934/cpaa.2006.5.611.

[14]

V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), 1495-1506.  doi: 10.1088/0951-7715/19/7/001.

[15]

A. Savostianov, Strichartz estimates and smooth attractors for a sub-quintic wave equation with fractional damping in bounded domains, Adv. Differential Equations, 20 (2015), 495-530. 

[16]

A. Savostianov, Strichartz Estimates and Smooth Attractors of Dissipative Hyperbolic Equations, Doctoral dissertation, 2015.

[17]

J. Simon, Compact sets in the space $L^{p}(0, T;B), $, Ann. Mat. Pur. Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.

[18]

H. F. Smith and C. D. Sogge, Global strichartz estimates for non-trapping perturbations of the laplacian, Comm. Partial Differential Equations, 25 (2000), 2171-2183.  doi: 10.1080/03605300008821581.

[19]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, SpringerVerlag, New York, 1997.

[20]

Z. YangZ. Liu and N. Feng, Longtime behavior of the semilinear wave equation with gentle dissipation, Discrete Contin. Dyn. Syst., 36 (2016), 6557-6580.  doi: 10.3934/dcds.2016084.

[1]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[2]

Francesco Di Plinio, Gregory S. Duane, Roger Temam. Time-dependent attractor for the Oscillon equation. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 141-167. doi: 10.3934/dcds.2011.29.141

[3]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006

[4]

Qingquan Chang, Dandan Li, Chunyou Sun. Random attractors for stochastic time-dependent damped wave equation with critical exponents. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2793-2824. doi: 10.3934/dcdsb.2020033

[5]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic and Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[6]

Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022

[7]

Fengjuan Meng, Chengkui Zhong. Multiple equilibrium points in global attractor for the weakly damped wave equation with critical exponent. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 217-230. doi: 10.3934/dcdsb.2014.19.217

[8]

Tingting Liu, Qiaozhen Ma, Ling Xu. Attractor of the Kirchhoff type plate equation with memory and nonlinear damping on the whole time-dependent space. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022046

[9]

Nobu Kishimoto, Minjie Shan, Yoshio Tsutsumi. Global well-posedness and existence of the global attractor for the Kadomtsev-Petviashvili Ⅱ equation in the anisotropic Sobolev space. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1283-1307. doi: 10.3934/dcds.2020078

[10]

Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351

[11]

Nikolaos Bournaveas. Local well-posedness for a nonlinear dirac equation in spaces of almost critical dimension. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 605-616. doi: 10.3934/dcds.2008.20.605

[12]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[13]

Myeongju Chae, Soonsik Kwon. Global well-posedness for the $L^2$-critical Hartree equation on $\mathbb{R}^n$, $n\ge 3$. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1725-1743. doi: 10.3934/cpaa.2009.8.1725

[14]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1023-1041. doi: 10.3934/cpaa.2007.6.1023

[15]

Keyan Wang. Global well-posedness for a transport equation with non-local velocity and critical diffusion. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1203-1210. doi: 10.3934/cpaa.2008.7.1203

[16]

Alessandro Paolucci, Cristina Pignotti. Well-posedness and stability for semilinear wave-type equations with time delay. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1561-1571. doi: 10.3934/dcdss.2022049

[17]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations and Control Theory, 2022, 11 (2) : 515-536. doi: 10.3934/eect.2021011

[18]

Jin Takahashi, Eiji Yanagida. Time-dependent singularities in the heat equation. Communications on Pure and Applied Analysis, 2015, 14 (3) : 969-979. doi: 10.3934/cpaa.2015.14.969

[19]

Borys Alvarez-Samaniego, Pascal Azerad. Existence of travelling-wave solutions and local well-posedness of the Fowler equation. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 671-692. doi: 10.3934/dcdsb.2009.12.671

[20]

George Avalos. Concerning the well-posedness of a nonlinearly coupled semilinear wave and beam--like equation. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 265-288. doi: 10.3934/dcds.1997.3.265

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (321)
  • HTML views (244)
  • Cited by (0)

Other articles
by authors

[Back to Top]