
-
Previous Article
Boundedness and asymptotic behavior in a predator-prey model with indirect pursuit-evasion interaction
- DCDS-B Home
- This Issue
-
Next Article
The existence of time-dependent attractor for wave equation with fractional damping and lower regular forcing term
Fractional $ 1 $-Laplacian evolution equations to remove multiplicative noise
1. | College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China |
2. | College of Mathematics and Statistics, Chongqing Three Gorges University, Chongqing 404100, China |
In this paper, we propose a new image denosing model to remove the multiplicative noise by a maximum a posteriori estimation and an inhomogeneous fractional $ 1 $-Laplace evolution equation. The main difficulty of the problem is the equation will become very singular when $ u(x) = u(y) $. The existence and uniqueness of the weak positive solution are proved. Numerical examples demonstrate the better capability of our model on some heavy multiplicative noised images.
References:
[1] |
B. Abdellaoui, A. Attar, R. Bentifour and I. Peral,
On fractional $p$-Laplacian parabolic problem with general data, Ann. Mat. Pura Appl., 197 (2018), 329-356.
doi: 10.1007/s10231-017-0682-z. |
[2] |
F. Andreu, J. M. Mzaón, J. D. Rossi and J. Toledo,
A nonlocal $p$-Laplacian evolution equation with Neumann boundary conditions, J. Math. Pures Appl., 90 (2008), 201-227.
doi: 10.1016/j.matpur.2008.04.003. |
[3] |
G. Aubert and J.-F. Aujol,
A variational approach to removing multiplicative noise, SIAM J. Appl. Math., 68 (2008), 925-946.
doi: 10.1137/060671814. |
[4] |
L. Brasco, E. Lindgren and E. Parini,
The fractional Cheeger problem, Interfaces Free Bound., 16 (2004), 419-458.
doi: 10.4171/IFB/325. |
[5] |
A. Buades, B. Coll and J. M. Morel,
A review of image denoising algorithms, with a new one, Multiscale Model. Simul., 4 (2005), 490-530.
doi: 10.1137/040616024. |
[6] |
B. Chen, J.-L. Cai, W.-S. Chen and Y. Li, A multiplicative noise removal approach based on partial differential equation model, Math. Probl. Eng., 2012 (2012), Art. ID 242043, 14 pp.
doi: 10.1155/2012/242043. |
[7] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[8] |
F. Dong, H. Zhang and D.-X. Kong,
Nonlocal total variation models for multiplicative noise removal using split Bregman iteration, Math. Comput. Modelling, 55 (2012), 939-954.
doi: 10.1016/j.mcm.2011.09.021. |
[9] |
W. Feng, H. Lei and Y. Gao,
Speckle reduction via higher order total variation approach, IEEE Trans. Image Process., 23 (2014), 1831-1843.
doi: 10.1109/TIP.2014.2308432. |
[10] |
G. Gilboa and S. Osher,
Nonlocal linear image regularization and supervised segmentation, Multiscale Model. Simul., 6 (2007), 595-630.
doi: 10.1137/060669358. |
[11] |
G. Gilboa and S. Osher,
Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7 (2008), 1005-1028.
doi: 10.1137/070698592. |
[12] |
Z. Guo, J. Yin and Q. Liu,
On a reaction-diffusion system applied to image decomposition and restoration, Math. Comput. Modelling, 53 (2011), 1336-1350.
doi: 10.1016/j.mcm.2010.12.031. |
[13] |
Y.-M. Huang, M. K. Ng and Y.-W. Wen,
A new total variation method for multiplicative noise removal, SIAM J. Imaging Sci., 2 (2009), 20-40.
doi: 10.1137/080712593. |
[14] |
Z. Jin and X. Yang,
Analysis of a new variational model for multiplicative noise removal, J. Math. Anal. Appl., 362 (2010), 415-426.
doi: 10.1016/j.jmaa.2009.08.036. |
[15] |
F. Li, M. K. Ng and C. Shen,
Multiplicative noise removal with spatially varying regularization parameters, SIAM J. Imaging Sci., 3 (2010), 1-20.
doi: 10.1137/090748421. |
[16] |
Q. Liu, X. Li and T. Gao,
A nondivergence $p$-Laplace equation in a removing multiplicative noise model, Nonlinear Anal. RWA, 14 (2013), 2046-2058.
doi: 10.1016/j.nonrwa.2013.02.008. |
[17] |
J. M. Mazón, J. D. Rossi and J. Toledo,
Fractional $p$-Laplacian evolution equations, J. Math. Pures Appl., 105 (2016), 810-844.
doi: 10.1016/j.matpur.2016.02.004. |
[18] |
D. Puhst,
On the evolutionary fractional $p$-laplacian, Appl. Math. Res. Express., 2015 (2015), 253-273.
doi: 10.1093/amrx/abv003. |
[19] |
L. Rudin, P.-L. Lions and S. Osher, Multiplicative denoising and deblurring: Theory and algorithms, in Geometric Level Set Methods in Imaging, Vision, and Graphics, S. Osher and N. Paragios, eds., Springer, New York, (2003) 103–119.
doi: 10.1007/0-387-21810-6_6. |
[20] |
L. I. Rudin, S. Osher and E. Fatemi,
Nonlinear total variation based noise removal algorithms, Phys. D: Nonlinear Phenomena, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F. |
[21] |
S. Segura de León and and C. M. Webler,
Global existence and uniqueness for the inhomogeneous $1$-Laplace evolution equation, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 1213-1246.
doi: 10.1007/s00030-015-0320-7. |
[22] |
J. Shi and S. Osher,
A nonlinear inverse scale space method for a convex multiplicative noise models, SIAM J. Img. Sci., 1 (2008), 294-321.
doi: 10.1137/070689954. |
[23] |
J. Simon,
Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[24] |
J. Sun, J. Li and Q. Liu,
Cauchy problem of a nonlocal $p$-Laplacian evolution equation with nonlocal convection, Nonlinear Anal. TMA, 95 (2014), 691-702.
doi: 10.1016/j.na.2013.09.023. |
[25] |
J. L. Vazquez,
The Dirichlet problem for the fractional $p$-Laplacian evolution equation, J. Differential Equations, 260 (2016), 6038-6056.
doi: 10.1016/j.jde.2015.12.033. |
[26] |
Z. Zhou, Z. Guo, G. Dong, J. Sun, D. Zhang and B. Wu,
A doubly degenerate diffusion model based on the gray level indicator for multiplicative noise removal, IEEE Trans. Image Process., 24 (2015), 249-260.
doi: 10.1109/TIP.2014.2376185. |
[27] |
Z. Zhou, Z. Guo and B. Y. Wu,
A doubly degenerate diffusion equation in multiplicative noise removal models, J. Math. Anal. Appl., 458 (2018), 58-70.
doi: 10.1016/j.jmaa.2017.08.049. |
show all references
References:
[1] |
B. Abdellaoui, A. Attar, R. Bentifour and I. Peral,
On fractional $p$-Laplacian parabolic problem with general data, Ann. Mat. Pura Appl., 197 (2018), 329-356.
doi: 10.1007/s10231-017-0682-z. |
[2] |
F. Andreu, J. M. Mzaón, J. D. Rossi and J. Toledo,
A nonlocal $p$-Laplacian evolution equation with Neumann boundary conditions, J. Math. Pures Appl., 90 (2008), 201-227.
doi: 10.1016/j.matpur.2008.04.003. |
[3] |
G. Aubert and J.-F. Aujol,
A variational approach to removing multiplicative noise, SIAM J. Appl. Math., 68 (2008), 925-946.
doi: 10.1137/060671814. |
[4] |
L. Brasco, E. Lindgren and E. Parini,
The fractional Cheeger problem, Interfaces Free Bound., 16 (2004), 419-458.
doi: 10.4171/IFB/325. |
[5] |
A. Buades, B. Coll and J. M. Morel,
A review of image denoising algorithms, with a new one, Multiscale Model. Simul., 4 (2005), 490-530.
doi: 10.1137/040616024. |
[6] |
B. Chen, J.-L. Cai, W.-S. Chen and Y. Li, A multiplicative noise removal approach based on partial differential equation model, Math. Probl. Eng., 2012 (2012), Art. ID 242043, 14 pp.
doi: 10.1155/2012/242043. |
[7] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[8] |
F. Dong, H. Zhang and D.-X. Kong,
Nonlocal total variation models for multiplicative noise removal using split Bregman iteration, Math. Comput. Modelling, 55 (2012), 939-954.
doi: 10.1016/j.mcm.2011.09.021. |
[9] |
W. Feng, H. Lei and Y. Gao,
Speckle reduction via higher order total variation approach, IEEE Trans. Image Process., 23 (2014), 1831-1843.
doi: 10.1109/TIP.2014.2308432. |
[10] |
G. Gilboa and S. Osher,
Nonlocal linear image regularization and supervised segmentation, Multiscale Model. Simul., 6 (2007), 595-630.
doi: 10.1137/060669358. |
[11] |
G. Gilboa and S. Osher,
Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7 (2008), 1005-1028.
doi: 10.1137/070698592. |
[12] |
Z. Guo, J. Yin and Q. Liu,
On a reaction-diffusion system applied to image decomposition and restoration, Math. Comput. Modelling, 53 (2011), 1336-1350.
doi: 10.1016/j.mcm.2010.12.031. |
[13] |
Y.-M. Huang, M. K. Ng and Y.-W. Wen,
A new total variation method for multiplicative noise removal, SIAM J. Imaging Sci., 2 (2009), 20-40.
doi: 10.1137/080712593. |
[14] |
Z. Jin and X. Yang,
Analysis of a new variational model for multiplicative noise removal, J. Math. Anal. Appl., 362 (2010), 415-426.
doi: 10.1016/j.jmaa.2009.08.036. |
[15] |
F. Li, M. K. Ng and C. Shen,
Multiplicative noise removal with spatially varying regularization parameters, SIAM J. Imaging Sci., 3 (2010), 1-20.
doi: 10.1137/090748421. |
[16] |
Q. Liu, X. Li and T. Gao,
A nondivergence $p$-Laplace equation in a removing multiplicative noise model, Nonlinear Anal. RWA, 14 (2013), 2046-2058.
doi: 10.1016/j.nonrwa.2013.02.008. |
[17] |
J. M. Mazón, J. D. Rossi and J. Toledo,
Fractional $p$-Laplacian evolution equations, J. Math. Pures Appl., 105 (2016), 810-844.
doi: 10.1016/j.matpur.2016.02.004. |
[18] |
D. Puhst,
On the evolutionary fractional $p$-laplacian, Appl. Math. Res. Express., 2015 (2015), 253-273.
doi: 10.1093/amrx/abv003. |
[19] |
L. Rudin, P.-L. Lions and S. Osher, Multiplicative denoising and deblurring: Theory and algorithms, in Geometric Level Set Methods in Imaging, Vision, and Graphics, S. Osher and N. Paragios, eds., Springer, New York, (2003) 103–119.
doi: 10.1007/0-387-21810-6_6. |
[20] |
L. I. Rudin, S. Osher and E. Fatemi,
Nonlinear total variation based noise removal algorithms, Phys. D: Nonlinear Phenomena, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F. |
[21] |
S. Segura de León and and C. M. Webler,
Global existence and uniqueness for the inhomogeneous $1$-Laplace evolution equation, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 1213-1246.
doi: 10.1007/s00030-015-0320-7. |
[22] |
J. Shi and S. Osher,
A nonlinear inverse scale space method for a convex multiplicative noise models, SIAM J. Img. Sci., 1 (2008), 294-321.
doi: 10.1137/070689954. |
[23] |
J. Simon,
Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[24] |
J. Sun, J. Li and Q. Liu,
Cauchy problem of a nonlocal $p$-Laplacian evolution equation with nonlocal convection, Nonlinear Anal. TMA, 95 (2014), 691-702.
doi: 10.1016/j.na.2013.09.023. |
[25] |
J. L. Vazquez,
The Dirichlet problem for the fractional $p$-Laplacian evolution equation, J. Differential Equations, 260 (2016), 6038-6056.
doi: 10.1016/j.jde.2015.12.033. |
[26] |
Z. Zhou, Z. Guo, G. Dong, J. Sun, D. Zhang and B. Wu,
A doubly degenerate diffusion model based on the gray level indicator for multiplicative noise removal, IEEE Trans. Image Process., 24 (2015), 249-260.
doi: 10.1109/TIP.2014.2376185. |
[27] |
Z. Zhou, Z. Guo and B. Y. Wu,
A doubly degenerate diffusion equation in multiplicative noise removal models, J. Math. Anal. Appl., 458 (2018), 58-70.
doi: 10.1016/j.jmaa.2017.08.049. |


[1] |
Niklas Sapountzoglou, Aleksandra Zimmermann. Renormalized solutions for stochastic $ p $-Laplace equations with $ L^1 $-initial data: The case of multiplicative noise. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 3979-4002. doi: 10.3934/dcds.2022041 |
[2] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[3] |
Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5681-5705. doi: 10.3934/dcdsb.2020376 |
[4] |
Xiaohui Zhang, Xuping Zhang. Upper semi-continuity of non-autonomous fractional stochastic $ p $-Laplacian equation driven by additive noise on $ \mathbb{R}^n $. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022081 |
[5] |
Claudianor O. Alves, Vincenzo Ambrosio, Teresa Isernia. Existence, multiplicity and concentration for a class of fractional $ p \& q $ Laplacian problems in $ \mathbb{R} ^{N} $. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2009-2045. doi: 10.3934/cpaa.2019091 |
[6] |
Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian. Mathematical Control and Related Fields, 2020, 10 (4) : 827-854. doi: 10.3934/mcrf.2020021 |
[7] |
Yupeng Li, Wuchen Li, Guo Cao. Image segmentation via $ L_1 $ Monge-Kantorovich problem. Inverse Problems and Imaging, 2019, 13 (4) : 805-826. doi: 10.3934/ipi.2019037 |
[8] |
Phuong Le. Symmetry of singular solutions for a weighted Choquard equation involving the fractional $ p $-Laplacian. Communications on Pure and Applied Analysis, 2020, 19 (1) : 527-539. doi: 10.3934/cpaa.2020026 |
[9] |
Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure and Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293 |
[10] |
Elhoussine Azroul, Abdelmoujib Benkirane, and Mohammed Shimi. On a nonlocal problem involving the fractional $ p(x,.) $-Laplacian satisfying Cerami condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3479-3495. doi: 10.3934/dcdss.2020425 |
[11] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3851-3863. doi: 10.3934/dcdss.2020445 |
[12] |
Simone Creo, Maria Rosaria Lancia, Paola Vernole. Transmission problems for the fractional $ p $-Laplacian across fractal interfaces. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022047 |
[13] |
Pablo Amster, Mariel Paula Kuna, Dionicio Santos. Stability, existence and non-existence of $ T $-periodic solutions of nonlinear delayed differential equations with $ \varphi $-Laplacian. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2723-2737. doi: 10.3934/cpaa.2022070 |
[14] |
Changchun Liu, Pingping Li. Global existence for a chemotaxis-haptotaxis model with $ p $-Laplacian. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1399-1419. doi: 10.3934/cpaa.2020070 |
[15] |
Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $ p $-Laplacian type. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070 |
[16] |
Nikolay Dimitrov, Stepan Tersian. Existence of homoclinic solutions for a nonlinear fourth order $ p $-Laplacian difference equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 555-567. doi: 10.3934/dcdsb.2019254 |
[17] |
Jiayi Han, Changchun Liu. Global existence for a two-species chemotaxis-Navier-Stokes system with $ p $-Laplacian. Electronic Research Archive, 2021, 29 (5) : 3509-3533. doi: 10.3934/era.2021050 |
[18] |
Mohamed Karim Hamdani, Lamine Mbarki, Mostafa Allaoui, Omar Darhouche, Dušan D. Repovš. Existence and multiplicity of solutions involving the $ p(x) $-Laplacian equations: On the effect of two nonlocal terms. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022129 |
[19] |
Yong Zhou, Jia Wei He. New results on controllability of fractional evolution systems with order $ \alpha\in (1,2) $. Evolution Equations and Control Theory, 2021, 10 (3) : 491-509. doi: 10.3934/eect.2020077 |
[20] |
Abdolrahman Razani, Giovany M. Figueiredo. A positive solution for an anisotropic $ (p,q) $-Laplacian. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022147 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]