\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Attractors for a class of perturbed nonclassical diffusion equations with memory

  • * Corresponding author: Yongqin Xie

    * Corresponding author: Yongqin Xie 

The work was partly supported by NSFS grants 51578080, 11101053, 71471020, Postgraduate scientific research innovation project of Hunan Province (CX20210751)

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, using a new operator decomposition method (or framework), we establish the existence, regularity and upper semi-continuity of global attractors for a perturbed nonclassical diffusion equation with fading memory. It is worth noting that we get the same conclusion in [7,14] as the perturbed parameters $ \nu = 0 $, but the nonlinearity $ f $ satisfies arbitrary polynomial growth condition rather than critical exponential growth condition.

     

    Correction: “College of Arts and Sciences” has been changed to "College of Science"; “Postgraduate scientific research innovation project of Hunan Province (CX20210751)” has been added to Fund Project. We apologize for any inconvenience this may cause.

    Mathematics Subject Classification: Primary: 35B40, 35B41; Secondary: 35K57.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] E. C. Aifantis, On the problem of diffusion in solids, Acta Mech., 37 (1980), 265-296.  doi: 10.1007/BF01202949.
    [2] C. T. Anh and T. Q. Bao, Pullback attractors for a class of non-autonomous nonclassical diffusion equations, Nonlinear Anal., 73 (2010), 399-412.  doi: 10.1016/j.na.2010.03.031.
    [3] C. T. Anh and N. D. Toan, Pullback attractors for nonclassical diffusion equations in noncylindrical domains, Internat. J. Math. & Math. Sci., 2012 (2012), 875913.  doi: 10.1155/2012/875913.
    [4] C. T. Anh and N. D. Toan, Existence and upper semicontinuity of uniform attractors in $H^1(R^N)$ for nonautonomous nonclassical difusion equations, Ann. Pol. Math., 111 (2014), 271-295.  doi: 10.4064/ap111-3-5.
    [5] P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19 (1968), 614-627.  doi: 10.1007/BF01594969.
    [6] D. Colton, Pseudo-parabolic equations in one space variable, J. Differ. Equations, 12 (1972), 559-565.  doi: 10.1016/0022-0396(72)90025-3.
    [7] M. ContiF. Dell'Oro and V. Pata, Nonclassical diffusion with memory lacking instantaneous damping, Commun. Pur. Appl. Anal., 19 (2020), 2035-2050.  doi: 10.3934/cpaa.2020090.
    [8] L. C. Evans, Partial Differential Equations, Grad. Stud. Math., vol. 19, AMS, Providence, RI, 1998.
    [9] J. C. RobinsonInfinite-Dimensional Dynamical Dystems, Cambridge University Press, 2001.  doi: 10.1007/978-94-010-0732-0.
    [10] R. E. Showalter, Sobolev equations for nonlinear dispersive systems, Appl. Anal., 7 (1978), 297-308.  doi: 10.1080/00036817808839200.
    [11] S. L. Sobolev, On a new problems in mathematical physics, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 18 (1954), 3-50. 
    [12] C. SunD. Dao and J. Duan, Uniform attractors for nonautonomous wave equations with nonlinear damping, SIAM J. Appl. Dyna. Syst., 6 (2008), 293-318.  doi: 10.1137/060663805.
    [13] C. Sun and M. Yang, Dynamics of the nonclassical diffusion equations, Asympt. Anal., 59 (2008), 51-81.  doi: 10.3233/ASY-2008-0886.
    [14] N. D. Toan, Uniform attractors of nonclassical diffusion equations lacking instantaneous damping on $\mathbb {R}^{N} $ with memory, Acta Appl. Math., 170 (2020), 789-822.  doi: 10.1007/s10440-020-00359-1.
    [15] F. Wang, P. Wang and Z. Yao, Approximate controllability of fractioanal paritial differential equation, Adv. Differ. Equ., 2015 (2015), 367, 10 pp. doi: 10.1186/s13662-015-0692-3.
    [16] L. WangY. Wang and Y. Qin, Upper semicontinuity of attractors for nonclassical diffusion equations in $H^1(\mathbb{R}^3)$, Appl. Math.Comput., 240 (2014), 51-61.  doi: 10.1016/j.amc.2014.04.092.
    [17] S. WangD. Li and C. Zhong, On the dynamics of a class of nonclassical parabolic equations, J. Math. Anal. Appl., 317 (2006), 565-582.  doi: 10.1016/j.jmaa.2005.06.094.
    [18] X. WangL. Yang and C. Zhong, Attractors for the nonclassical diffusion equations with fading memory, J. Math. Anal. Appl., 362 (2010), 327-337.  doi: 10.1016/j.jmaa.2009.09.029.
    [19] Y. WangP. Li and Y. Qin, Upper semicontinuity of uniform attractors for nonclassical diffusion equations, Bound. Value. Probl., 2017 (2017), 84.  doi: 10.1186/s13661-017-0816-7.
    [20] Y. Wang and Y. Qin, Upper semicontinuity of pullback attractors for nonclassical diffusion equations, J. Math. Phys., 51 (2010), 022701.  doi: 10.1063/1.3277152.
    [21] Y. L. Xiao, Attractors for a nonclassical diffusion equation, Acta Math. Appl. Sin. English Ser., 18 (2002), 273-276.  doi: 10.1007/s102550200026.
    [22] Y. XieJ. Li and K. Zhu, Upper semicontinuity of attractors for nonclassical diffusion equations with arbitrary polynomial growth, Adv. Differ. Equ., 2021 (2021), 75.  doi: 10.1186/s13662-020-03146-2.
    [23] Y. Xie, Y. Li and Y. Zeng, Uniform attractors for nonclassical diffusion equations with memory, J. Func. Spac., 2016 (2016), Art. ID 5340489, 11 pp. doi: 10.1155/2016/5340489.
    [24] Y. XieQ. Li and K. Zhu, Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity, Nonlinear Anal., 31 (2016), 23-37.  doi: 10.1016/j.nonrwa.2016.01.004.
    [25] Y. Xie, K. Zhu and C. Sun, The existence of uniform attractors for non-autonomous reaction-diffusion equations on the whole space, J. Math. Phys., 53 (2012), 082703, 11 pp. doi: 10.1063/1.4746693.
    [26] J. ZhangY. XieQ. Luo and Z. Tang, Asymptotic behavior for the semi-linear reaction diffusion equations with memory, Adv. Differ. Equ., 2019 (2019), 510.  doi: 10.1186/s13662-019-2399-3.
    [27] K. ZhuY. XieF. Zhou and X. Li, Pullback attractors for the non-autonomous recation-diffusion equations in $\mathbb{R}^n$, J. Math. Phys., 60 (2019), 0032702.  doi: 10.1063/1.5040329.
  • 加载中
SHARE

Article Metrics

HTML views(560) PDF downloads(413) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return