
-
Previous Article
Using normal forms to study Oterma's transition in the Planar RTBP
- DCDS-B Home
- This Issue
-
Next Article
The existence of $ \omega $-limit set for a modified Nosé-Hoover oscillator
Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Online First articles via the “Online First” tab for the selected journal.
Bifurcation of the critical crossing cycle in a planar piecewise smooth system with two zones
1. | School of Mathematics, Hunan University, Changsha, Hunan 410082, China |
2. | College of Mathematics and Computer Science, Changsha University, Changsha, Hunan 410022, China |
3. | School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, Hunan 410114, China |
In this paper, we consider the nonsmooth bifurcation around a class of critical crossing cycles, which are codimension-2 closed orbits composed of tangency singularities and regular orbits, for a two-parameter family of planar piecewise smooth system with two zones. By the construction of suitable displacement function (equivalently, Poincar$ {\rm\acute{e}} $ map), the stability and the existence of periodic solutions under the variation of the parameters inside this system are characterized. More precisely, we obtain some parameter regions on the existence of crossing cycles and sliding cycles near those loops. As applications, several examples are given to illustrate our main conclusions.
References:
[1] |
K. D. S. Andrade, O. M. L. Gomide and D. D. Novaes, Qualitative analysis of polycycles in Filippov systems, Preprint, arXiv: 1905.11950, 2019. |
[2] |
M. D. Bernardo, K. H. Johansson and F. Vasca,
Self-oscillations and sliding in relay feedback systems: Symmetry and bifurcations, International Journal of Bifurcation and Chaos, 11 (2001), 1121-1140.
doi: 10.1142/S0218127401002584. |
[3] |
S. Chen and Z. Du, Stability and perturbations of homoclinic loops in a class of piecewise smooth systems, Internat. J. Bifur. Chaos Appl. Sci., 25 (2015), 1550114, 16 pp.
doi: 10.1142/S021812741550114X. |
[4] |
S. Coombes, R. Thul and K. C. A. Wedgwood,
Nonsmooth dynamics in spiking neuron models, Phys. D, 241 (2012), 2042-2057.
doi: 10.1016/j.physd.2011.05.012. |
[5] |
F. Dercole, A. Gragnani and S. Rinaldi,
Bifurcation analysis of piecewise smooth ecological models, Theoretical Population Biology, 72 (2007), 197-213.
doi: 10.1016/j.tpb.2007.06.003. |
[6] |
M. Di Bernardo, C. J. Budd, A. R. Champneys, P. Kowalczyk, A. B. Nordmark, G. O. Tost and P. T. Piiroinen,
Bifurcations in nonsmooth dynamical systems, SIAM Rev., 50 (2008), 629-701.
doi: 10.1137/050625060. |
[7] |
M. Di Bernardo, M. I. Feigin, S. J. Hogan and M. E. Homer,
Local analysis of C-bifurcations in n-dimensional piecewise-smooth dynamical systems, Chaos Solitons Fractals, 10 (1999), 1881-1908.
doi: 10.1016/S0960-0779(98)00317-8. |
[8] |
Z. Du, Y. Li and W. Zhang,
Bifurcation of periodic orbits in a class of planar Filippov systems, Nonlinear Anal., 69 (2008), 3610-3628.
doi: 10.1016/j.na.2007.09.045. |
[9] |
R. D. Euzbio and J. Llibre,
On the number of limit cycles in discontinuous piecewise linear differential systems with two pieces separated by a straight line, J. Math. Anal. Appl., 424 (2015), 475-486.
doi: 10.1016/j.jmaa.2014.10.077. |
[10] |
A. F. Filippov, Differential Equations with Discontinuous Righthand Sides: Control Systems, Mathematics and its Applications (Soviet Series), 18. Kluwer Academic Publishers Group, Dordrecht, 1988.
doi: 10.1007/978-94-015-7793-9. |
[11] |
E. Freire, E. Ponce and F. Torres,
Canonical discontinuous planar piecewise linear systems, SIAM J. Appl. Dyn. Syst., 11 (2012), 181-211.
doi: 10.1137/11083928X. |
[12] |
E. Freire, E. Ponce and F. Torres,
On the critical crossing cycle bifurcation in planar Filippov systems, J. Differential Equations, 259 (2015), 7086-7107.
doi: 10.1016/j.jde.2015.08.013. |
[13] |
U. Galvanetto, S. R. Bishop and L. Briseghella,
Mechanical stick-slip vibrations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 637-651.
doi: 10.1142/S0218127495000508. |
[14] |
M. Guardia, T. M. Seara and M. A. Teixeira,
Generic bifurcations of low codimension of planar Filippov Systems, J. Differential Equations, 250 (2011), 1967-2023.
doi: 10.1016/j.jde.2010.11.016. |
[15] |
S. M. Huan and X. S. Yang,
Existence of limit cycles in general planar piecewise linear systems of saddle-saddle dynamics, Nonlinear Anal., 92 (2013), 82-95.
doi: 10.1016/j.na.2013.06.017. |
[16] |
M. Kunze, Non-Smooth Dynamical Systems, Lecture Notes in Mathematics, 1744. Springer-Verlag, Berlin, 2000.
doi: 10.1007/BFb0103843. |
[17] |
Y. A. Kuznetsov, S. Rinaldi and A. Gragnani,
One-parameter bifurcations in planar filippov systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 2157-2188.
doi: 10.1142/S0218127403007874. |
[18] |
S. Lang, Introduction to Differentiable Manifolds, 2$^nd$ edition, Universitext. Springer-Verlag, New York, 2002. |
[19] |
T. Li and X. Chen,
Degenerate grazing-sliding bifurcations in planar Filippov systems, J. Differential Equations, 269 (2020), 11396-11434.
doi: 10.1016/j.jde.2020.08.037. |
[20] |
F. Liang and M. Han, The stability of some kinds of generalized homoclinic loops in planar piecewise smooth systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350027, 15pp.
doi: 10.1142/S0218127413500272. |
[21] |
F. Liang, M. Han and X. Zhang,
Bifurcation of limit cycles from generalized homoclinic loops in planar piecewise smooth systems, J. Differential Equations, 255 (2013), 4403-4436.
doi: 10.1016/j.jde.2013.08.013. |
[22] |
J. Llibre, M. A. Teixeira and J. Torregrosa, Lower bounds for the maximum number of limit cycles of discontinuous piecewise linear differential systems with a straight line of separation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350066, 10pp.
doi: 10.1142/S0218127413500661. |
[23] |
D. D. Novaes, M. A. Teixeira and I. O. Zeli,
The generic unfolding of a codimension-two connection to a two-fold singularity of planar Filippov systems, Nonlinearity, 31 (2018), 2083-2104.
doi: 10.1088/1361-6544/aaaaf7. |
[24] |
J. Wang, X. Chen and L. Huang,
The number and stability of limit cycles for planar piecewise linear systems of node-saddle type, J. Math. Anal. Appl., 469 (2019), 405-427.
doi: 10.1016/j.jmaa.2018.09.024. |
[25] |
J. Wang, C. Huang and L. Huang,
Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type, Nonlinear Anal. Hybrid Syst., 33 (2019), 162-178.
doi: 10.1016/j.nahs.2019.03.004. |
[26] |
Y. Xiong and M. Han,
Limit cycle bifurcations near homoclinic and heteroclinic loops via stability-changing of a homoclinic loop, Chaos Solitons Fractals, 78 (2015), 107-117.
doi: 10.1016/j.chaos.2015.07.015. |
show all references
References:
[1] |
K. D. S. Andrade, O. M. L. Gomide and D. D. Novaes, Qualitative analysis of polycycles in Filippov systems, Preprint, arXiv: 1905.11950, 2019. |
[2] |
M. D. Bernardo, K. H. Johansson and F. Vasca,
Self-oscillations and sliding in relay feedback systems: Symmetry and bifurcations, International Journal of Bifurcation and Chaos, 11 (2001), 1121-1140.
doi: 10.1142/S0218127401002584. |
[3] |
S. Chen and Z. Du, Stability and perturbations of homoclinic loops in a class of piecewise smooth systems, Internat. J. Bifur. Chaos Appl. Sci., 25 (2015), 1550114, 16 pp.
doi: 10.1142/S021812741550114X. |
[4] |
S. Coombes, R. Thul and K. C. A. Wedgwood,
Nonsmooth dynamics in spiking neuron models, Phys. D, 241 (2012), 2042-2057.
doi: 10.1016/j.physd.2011.05.012. |
[5] |
F. Dercole, A. Gragnani and S. Rinaldi,
Bifurcation analysis of piecewise smooth ecological models, Theoretical Population Biology, 72 (2007), 197-213.
doi: 10.1016/j.tpb.2007.06.003. |
[6] |
M. Di Bernardo, C. J. Budd, A. R. Champneys, P. Kowalczyk, A. B. Nordmark, G. O. Tost and P. T. Piiroinen,
Bifurcations in nonsmooth dynamical systems, SIAM Rev., 50 (2008), 629-701.
doi: 10.1137/050625060. |
[7] |
M. Di Bernardo, M. I. Feigin, S. J. Hogan and M. E. Homer,
Local analysis of C-bifurcations in n-dimensional piecewise-smooth dynamical systems, Chaos Solitons Fractals, 10 (1999), 1881-1908.
doi: 10.1016/S0960-0779(98)00317-8. |
[8] |
Z. Du, Y. Li and W. Zhang,
Bifurcation of periodic orbits in a class of planar Filippov systems, Nonlinear Anal., 69 (2008), 3610-3628.
doi: 10.1016/j.na.2007.09.045. |
[9] |
R. D. Euzbio and J. Llibre,
On the number of limit cycles in discontinuous piecewise linear differential systems with two pieces separated by a straight line, J. Math. Anal. Appl., 424 (2015), 475-486.
doi: 10.1016/j.jmaa.2014.10.077. |
[10] |
A. F. Filippov, Differential Equations with Discontinuous Righthand Sides: Control Systems, Mathematics and its Applications (Soviet Series), 18. Kluwer Academic Publishers Group, Dordrecht, 1988.
doi: 10.1007/978-94-015-7793-9. |
[11] |
E. Freire, E. Ponce and F. Torres,
Canonical discontinuous planar piecewise linear systems, SIAM J. Appl. Dyn. Syst., 11 (2012), 181-211.
doi: 10.1137/11083928X. |
[12] |
E. Freire, E. Ponce and F. Torres,
On the critical crossing cycle bifurcation in planar Filippov systems, J. Differential Equations, 259 (2015), 7086-7107.
doi: 10.1016/j.jde.2015.08.013. |
[13] |
U. Galvanetto, S. R. Bishop and L. Briseghella,
Mechanical stick-slip vibrations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 637-651.
doi: 10.1142/S0218127495000508. |
[14] |
M. Guardia, T. M. Seara and M. A. Teixeira,
Generic bifurcations of low codimension of planar Filippov Systems, J. Differential Equations, 250 (2011), 1967-2023.
doi: 10.1016/j.jde.2010.11.016. |
[15] |
S. M. Huan and X. S. Yang,
Existence of limit cycles in general planar piecewise linear systems of saddle-saddle dynamics, Nonlinear Anal., 92 (2013), 82-95.
doi: 10.1016/j.na.2013.06.017. |
[16] |
M. Kunze, Non-Smooth Dynamical Systems, Lecture Notes in Mathematics, 1744. Springer-Verlag, Berlin, 2000.
doi: 10.1007/BFb0103843. |
[17] |
Y. A. Kuznetsov, S. Rinaldi and A. Gragnani,
One-parameter bifurcations in planar filippov systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 2157-2188.
doi: 10.1142/S0218127403007874. |
[18] |
S. Lang, Introduction to Differentiable Manifolds, 2$^nd$ edition, Universitext. Springer-Verlag, New York, 2002. |
[19] |
T. Li and X. Chen,
Degenerate grazing-sliding bifurcations in planar Filippov systems, J. Differential Equations, 269 (2020), 11396-11434.
doi: 10.1016/j.jde.2020.08.037. |
[20] |
F. Liang and M. Han, The stability of some kinds of generalized homoclinic loops in planar piecewise smooth systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350027, 15pp.
doi: 10.1142/S0218127413500272. |
[21] |
F. Liang, M. Han and X. Zhang,
Bifurcation of limit cycles from generalized homoclinic loops in planar piecewise smooth systems, J. Differential Equations, 255 (2013), 4403-4436.
doi: 10.1016/j.jde.2013.08.013. |
[22] |
J. Llibre, M. A. Teixeira and J. Torregrosa, Lower bounds for the maximum number of limit cycles of discontinuous piecewise linear differential systems with a straight line of separation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350066, 10pp.
doi: 10.1142/S0218127413500661. |
[23] |
D. D. Novaes, M. A. Teixeira and I. O. Zeli,
The generic unfolding of a codimension-two connection to a two-fold singularity of planar Filippov systems, Nonlinearity, 31 (2018), 2083-2104.
doi: 10.1088/1361-6544/aaaaf7. |
[24] |
J. Wang, X. Chen and L. Huang,
The number and stability of limit cycles for planar piecewise linear systems of node-saddle type, J. Math. Anal. Appl., 469 (2019), 405-427.
doi: 10.1016/j.jmaa.2018.09.024. |
[25] |
J. Wang, C. Huang and L. Huang,
Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type, Nonlinear Anal. Hybrid Syst., 33 (2019), 162-178.
doi: 10.1016/j.nahs.2019.03.004. |
[26] |
Y. Xiong and M. Han,
Limit cycle bifurcations near homoclinic and heteroclinic loops via stability-changing of a homoclinic loop, Chaos Solitons Fractals, 78 (2015), 107-117.
doi: 10.1016/j.chaos.2015.07.015. |













[1] |
Dingheng Pi. Limit cycles for regularized piecewise smooth systems with a switching manifold of codimension two. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 881-905. doi: 10.3934/dcdsb.2018211 |
[2] |
Hang Zheng, Yonghui Xia. Chaotic threshold of a class of hybrid piecewise-smooth system by an impulsive effect via Melnikov-type function. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2021319 |
[3] |
Hun Ki Baek, Younghae Do. Dangerous Border-Collision bifurcations of a piecewise-smooth map. Communications on Pure and Applied Analysis, 2006, 5 (3) : 493-503. doi: 10.3934/cpaa.2006.5.493 |
[4] |
Dingheng Pi. Periodic orbits for double regularization of piecewise smooth systems with a switching manifold of codimension two. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1055-1073. doi: 10.3934/dcdsb.2021080 |
[5] |
Shanshan Liu, Maoan Han. Bifurcation of limit cycles in a family of piecewise smooth systems via averaging theory. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3115-3124. doi: 10.3934/dcdss.2020133 |
[6] |
Anton S. Zadorin. Exact travelling solution for a reaction-diffusion system with a piecewise constant production supported by a codimension-1 subspace. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1567-1580. doi: 10.3934/cpaa.2022030 |
[7] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[8] |
Yurong Li, Zhengdong Du. Applying battelli-fečkan's method to transversal heteroclinic bifurcation in piecewise smooth systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6025-6052. doi: 10.3934/dcdsb.2019119 |
[9] |
Yilei Tang. Global dynamics and bifurcation of planar piecewise smooth quadratic quasi-homogeneous differential systems. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2029-2046. doi: 10.3934/dcds.2018082 |
[10] |
Luca Dieci, Cinzia Elia. Piecewise smooth systems near a co-dimension 2 discontinuity manifold: Can one say what should happen?. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1039-1068. doi: 10.3934/dcdss.2016041 |
[11] |
Atanas Stefanov. On the Lipschitzness of the solution map for the 2 D Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1471-1490. doi: 10.3934/dcds.2010.26.1471 |
[12] |
Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1263-1284. doi: 10.3934/dcdsb.2021089 |
[13] |
Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114 |
[14] |
Lingbing He. On the global smooth solution to 2-D fluid/particle system. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 237-263. doi: 10.3934/dcds.2010.27.237 |
[15] |
Christian Wolf. A shift map with a discontinuous entropy function. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012 |
[16] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[17] |
Yipeng Chen, Yicheng Liu, Xiao Wang. Exponential stability for a multi-particle system with piecewise interaction function and stochastic disturbance. Evolution Equations and Control Theory, 2022, 11 (3) : 729-748. doi: 10.3934/eect.2021023 |
[18] |
Zeng Zhang, Zhaoyang Yin. Global existence for a two-component Camassa-Holm system with an arbitrary smooth function. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5523-5536. doi: 10.3934/dcds.2018243 |
[19] |
Viviane Baladi, Daniel Smania. Smooth deformations of piecewise expanding unimodal maps. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 685-703. doi: 10.3934/dcds.2009.23.685 |
[20] |
Elmehdi Amhraoui, Tawfik Masrour. Smoothing approximations for piecewise smooth functions: A probabilistic approach. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021033 |
2020 Impact Factor: 1.327
Tools
Article outline
Figures and Tables
[Back to Top]