doi: 10.3934/dcdsb.2021274
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Stability and applications of multi-order fractional systems

Department of Electrical Engineering, University of Chile, Av. Tupper 2007, Santiago, Chile

Received  September 2020 Revised  August 2021 Early access November 2021

Fund Project: The author thanks the anonymous reviewers for their comments. This research was supported by CONICYTPCHA/National PhD scholarship program, 2018

This paper establishes conditions for global/local robust asymptotic stability for a class of multi-order nonlinear fractional systems consisting of a linear part plus a global/local Lipschitz nonlinear term. The derivation order can be different in each coordinate and take values in $ (0, 2) $. As a consequence, a linearized stability theorem for multi-order systems is also obtained. The stability conditions are order-dependent, reducing the conservatism of order-independent ones. Detailed examples in robust control and population dynamics show the applicability of our results. Simulations are attached, showing the distinctive features that justify multi-order modelling.

Citation: Javier Gallegos. Stability and applications of multi-order fractional systems. Discrete and Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021274
References:
[1] D. BaleanuK. DiethelmE. Scalas and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, 2 edition, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. 
[2]

C. Bonnet and J. Partington, Coprime factorizations and stability of fractional differential systems, Syst. Control. Lett., 41 (2000), 167-174.  doi: 10.1016/S0167-6911(00)00050-5.

[3]

O. Brandibur and E. Kaslik, Stability of two-component incommensurate fractional-order systems and applications to the investigation of a FitzHugh-Nagumo neuronal model, Math. Methods. Appl. Sci., 41 (2018), 7182-7194.  doi: 10.1002/mma.4768.

[4]

J. ChenK. LundbergD. Davison and D. Bernstein, The Final Value Theorem Revisited - Infinite Limits and Irrational Functions, IEEE. Control. Syst. Mag., 27 (2007), 97-99. 

[5]

N. CongT. DoanS. Siegmund and H. Tuan, Linearized asymptotic stability for fractional differential equations, Electron. J. Qual. Theory Differ. Equ., 39 (2016), 1-13.  doi: 10.14232/ejqtde.2016.1.39.

[6]

W. DengC. Li and J. Lü, Stability analysis of linear fractional differential system with multiple delays, Nonlinear Dynam., 48 (2007), 409-416.  doi: 10.1007/s11071-006-9094-0.

[7] C. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties, Academic, New York, 1975. 
[8]

K. DiethelmS. Siegmund and H. T. Tuan, Asymptotic behavior of solutions of linear multi-order fractional differential equation system, Fract. Calc. Appl. Anal., 20 (2017), 1165-1195.  doi: 10.1515/fca-2017-0062.

[9]

J. A. GallegosN. Aguila-Camacho and M. A. Duarte-Mermoud, Smooth solutions to mixed-order fractional differential systems with applications to stability analysis, J. Integral Equations Appl., 31 (2019), 59-84.  doi: 10.1216/jie-2019-31-1-59.

[10]

J. A. GallegosN. Aguila-Camacho and M. A. Duarte-Mermoud, Vector Lyapunov-like functions for multi-order fractional systems with multiple time-varying delays, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 105089.  doi: 10.1016/j.cnsns.2019.105089.

[11]

J. A. Gallegos and M. A. Duarte-Mermoud, Robustness and convergence of fractional systems and their applications to adaptive systems, Fract. Calc. Appl. Anal., 20 (2017), 895-913.  doi: 10.1515/fca-2017-0047.

[12]

J. A. Gallegos and M. A. Duarte-Mermoud, Converse theorems in Lyapunov's second method and applications for fractional order systems, Turkish J. Math., 43 (2019), 1626-1639.  doi: 10.3906/mat-1808-75.

[13] A. KilbasH. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B. V., Amsterdam, 2006. 
[14]

V. Lakshmikantham, V. M. Matrosov and S. Sivasundaram, Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems, Kluwer Academic Publishers, 1991. doi: 10.1007/978-94-015-7939-1.

[15]

B. Lenka, Fractional comparison method and asymptotic stability of multivariable fractional order systems, Commun. Nonlinear Sci. Numer. Simul., 69 (2019), 398-415.  doi: 10.1016/j.cnsns.2018.09.016.

[16]

W. LePage, Complex Variables and the Laplace Transform for Engineers, Dover Publications, 1980.

[17]

C. M. A. PintoA. Mendes Lopes and J. A. T. Machado, A review of power laws in real life phenomena, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3558-3578.  doi: 10.1016/j.cnsns.2012.01.013.

[18]

H. Taghavian and M. Tavazoei, Robust stability analysis of uncertain multiorder fractional systems: Young and Jensen inequalities approach, Internat. J. Robust Nonlinear Control, 28 (2017), 1127-1144.  doi: 10.1002/rnc.3919.

[19]

M. Tavazoei and M. Asemani, Fractional-order-dependent global stability analysis and observer-based synthesis for a class of nonlinear fractional-order systems, Internat. J. Robust Nonlinear Control, 28 (2018), 4549-4564.  doi: 10.1002/rnc.4250.

[20]

H. Tuan and H. Trinh, Stability of fractional-order nonlinear systems by Lyapunov direct method, IET Control Theory Appl., 12 (2018), 2417-2422.  doi: 10.1049/iet-cta.2018.5233.

[21]

Z. WangD. Yang and H. Zhang, Stability analysis on a class of nonlinear fractional-order system, Nonlinear Dynam., 86 (2016), 1023-1033.  doi: 10.1007/s11071-016-2943-6.

show all references

References:
[1] D. BaleanuK. DiethelmE. Scalas and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, 2 edition, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. 
[2]

C. Bonnet and J. Partington, Coprime factorizations and stability of fractional differential systems, Syst. Control. Lett., 41 (2000), 167-174.  doi: 10.1016/S0167-6911(00)00050-5.

[3]

O. Brandibur and E. Kaslik, Stability of two-component incommensurate fractional-order systems and applications to the investigation of a FitzHugh-Nagumo neuronal model, Math. Methods. Appl. Sci., 41 (2018), 7182-7194.  doi: 10.1002/mma.4768.

[4]

J. ChenK. LundbergD. Davison and D. Bernstein, The Final Value Theorem Revisited - Infinite Limits and Irrational Functions, IEEE. Control. Syst. Mag., 27 (2007), 97-99. 

[5]

N. CongT. DoanS. Siegmund and H. Tuan, Linearized asymptotic stability for fractional differential equations, Electron. J. Qual. Theory Differ. Equ., 39 (2016), 1-13.  doi: 10.14232/ejqtde.2016.1.39.

[6]

W. DengC. Li and J. Lü, Stability analysis of linear fractional differential system with multiple delays, Nonlinear Dynam., 48 (2007), 409-416.  doi: 10.1007/s11071-006-9094-0.

[7] C. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties, Academic, New York, 1975. 
[8]

K. DiethelmS. Siegmund and H. T. Tuan, Asymptotic behavior of solutions of linear multi-order fractional differential equation system, Fract. Calc. Appl. Anal., 20 (2017), 1165-1195.  doi: 10.1515/fca-2017-0062.

[9]

J. A. GallegosN. Aguila-Camacho and M. A. Duarte-Mermoud, Smooth solutions to mixed-order fractional differential systems with applications to stability analysis, J. Integral Equations Appl., 31 (2019), 59-84.  doi: 10.1216/jie-2019-31-1-59.

[10]

J. A. GallegosN. Aguila-Camacho and M. A. Duarte-Mermoud, Vector Lyapunov-like functions for multi-order fractional systems with multiple time-varying delays, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 105089.  doi: 10.1016/j.cnsns.2019.105089.

[11]

J. A. Gallegos and M. A. Duarte-Mermoud, Robustness and convergence of fractional systems and their applications to adaptive systems, Fract. Calc. Appl. Anal., 20 (2017), 895-913.  doi: 10.1515/fca-2017-0047.

[12]

J. A. Gallegos and M. A. Duarte-Mermoud, Converse theorems in Lyapunov's second method and applications for fractional order systems, Turkish J. Math., 43 (2019), 1626-1639.  doi: 10.3906/mat-1808-75.

[13] A. KilbasH. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B. V., Amsterdam, 2006. 
[14]

V. Lakshmikantham, V. M. Matrosov and S. Sivasundaram, Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems, Kluwer Academic Publishers, 1991. doi: 10.1007/978-94-015-7939-1.

[15]

B. Lenka, Fractional comparison method and asymptotic stability of multivariable fractional order systems, Commun. Nonlinear Sci. Numer. Simul., 69 (2019), 398-415.  doi: 10.1016/j.cnsns.2018.09.016.

[16]

W. LePage, Complex Variables and the Laplace Transform for Engineers, Dover Publications, 1980.

[17]

C. M. A. PintoA. Mendes Lopes and J. A. T. Machado, A review of power laws in real life phenomena, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3558-3578.  doi: 10.1016/j.cnsns.2012.01.013.

[18]

H. Taghavian and M. Tavazoei, Robust stability analysis of uncertain multiorder fractional systems: Young and Jensen inequalities approach, Internat. J. Robust Nonlinear Control, 28 (2017), 1127-1144.  doi: 10.1002/rnc.3919.

[19]

M. Tavazoei and M. Asemani, Fractional-order-dependent global stability analysis and observer-based synthesis for a class of nonlinear fractional-order systems, Internat. J. Robust Nonlinear Control, 28 (2018), 4549-4564.  doi: 10.1002/rnc.4250.

[20]

H. Tuan and H. Trinh, Stability of fractional-order nonlinear systems by Lyapunov direct method, IET Control Theory Appl., 12 (2018), 2417-2422.  doi: 10.1049/iet-cta.2018.5233.

[21]

Z. WangD. Yang and H. Zhang, Stability analysis on a class of nonlinear fractional-order system, Nonlinear Dynam., 86 (2016), 1023-1033.  doi: 10.1007/s11071-016-2943-6.

Figure 1.  Robust performance
Figure 2.  Population dynamics depending on the derivation order
[1]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057

[2]

Iman Malmir. Caputo fractional derivative operational matrices of Legendre and Chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 395-426. doi: 10.3934/naco.2021013

[3]

Piotr Grabowski. On analytic semigroup generators involving Caputo fractional derivative. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022014

[4]

Emiliano Cristiani, Elisa Iacomini. An interface-free multi-scale multi-order model for traffic flow. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6189-6207. doi: 10.3934/dcdsb.2019135

[5]

Muhammad Bilal Riaz, Syed Tauseef Saeed. Comprehensive analysis of integer-order, Caputo-Fabrizio (CF) and Atangana-Baleanu (ABC) fractional time derivative for MHD Oldroyd-B fluid with slip effect and time dependent boundary condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3719-3746. doi: 10.3934/dcdss.2020430

[6]

Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The Numerical Solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021026

[7]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317

[8]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control and Related Fields, 2020, 10 (1) : 141-156. doi: 10.3934/mcrf.2019033

[9]

Kolade M. Owolabi, Abdon Atangana, Jose Francisco Gómez-Aguilar. Fractional Adams-Bashforth scheme with the Liouville-Caputo derivative and application to chaotic systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2455-2469. doi: 10.3934/dcdss.2021060

[10]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023

[11]

Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6483-6510. doi: 10.3934/dcdsb.2021030

[12]

Platon Surkov. Dynamical estimation of a noisy input in a system with a Caputo fractional derivative. The case of continuous measurements of a part of phase coordinates. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022020

[13]

Cecilia Cavaterra, M. Grasselli. Robust exponential attractors for population dynamics models with infinite time delay. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1051-1076. doi: 10.3934/dcdsb.2006.6.1051

[14]

Henri Berestycki, Jean-Michel Roquejoffre, Luca Rossi. The periodic patch model for population dynamics with fractional diffusion. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 1-13. doi: 10.3934/dcdss.2011.4.1

[15]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations and Control Theory, 2022, 11 (1) : 239-258. doi: 10.3934/eect.2021001

[16]

Fangfang Dong, Yunmei Chen. A fractional-order derivative based variational framework for image denoising. Inverse Problems and Imaging, 2016, 10 (1) : 27-50. doi: 10.3934/ipi.2016.10.27

[17]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 937-956. doi: 10.3934/dcdss.2020055

[18]

Z.-R. He, M.-S. Wang, Z.-E. Ma. Optimal birth control problems for nonlinear age-structured population dynamics. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 589-594. doi: 10.3934/dcdsb.2004.4.589

[19]

M. M. El-Dessoky, Muhammad Altaf Khan. Application of Caputo-Fabrizio derivative to a cancer model with unknown parameters. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3557-3575. doi: 10.3934/dcdss.2020429

[20]

Kolade M. Owolabi, Abdon Atangana. High-order solvers for space-fractional differential equations with Riesz derivative. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 567-590. doi: 10.3934/dcdss.2019037

2020 Impact Factor: 1.327

Article outline

Figures and Tables

[Back to Top]