doi: 10.3934/dcdsb.2021276
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Pullback attractors via quasi-stability for non-autonomous lattice dynamical systems

Institute of Mathematics, University of Silesia in Katowice, Bankowa 14, 40-007 Katowice, Poland

In memory of María José Garrido Atienza

Received  February 2021 Revised  October 2021 Early access November 2021

In this paper we study long-time behavior of first-order non-autono-mous lattice dynamical systems in square summable space of double-sided sequences using the cooperation between the discretized diffusion operator and the discretized reaction term. We obtain existence of a pullback global attractor and construct pullback exponential attractor applying the introduced notion of quasi-stability of the corresponding evolution process.

Citation: Radosław Czaja. Pullback attractors via quasi-stability for non-autonomous lattice dynamical systems. Discrete and Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021276
References:
[1]

A. Y. Abdallah, Exponential attractors for first-order lattice dynamical systems, J. Math. Anal. Appl., 339 (2008), 217-224.  doi: 10.1016/j.jmaa.2007.06.054.

[2]

A. Y. Abdallah, Uniform exponential attractors for first order non-autonomous lattice dynamical systems, J. Differential Equations, 251 (2011), 1489-1504.  doi: 10.1016/j.jde.2011.05.030.

[3]

A. Y. Abdallah, Attractors for first order lattice systems with almost periodic nonlinear part, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 1241-1255.  doi: 10.3934/dcdsb.2019218.

[4]

P. W. BatesK. Lu and B. Wang, Attractors for lattice dynamical systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 143-153.  doi: 10.1142/S0218127401002031.

[5]

T. CaraballoG. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.  doi: 10.1016/j.na.2005.03.111.

[6]

T. CaraballoF. Morillas and J. Valero, Asymptotic behaviour of a logistic lattice system, Discrete Contin. Dyn. Syst., 34 (2014), 4019-4037.  doi: 10.3934/dcds.2014.34.4019.

[7]

T. Caraballo and S. Sonner, Random pullback exponential attractors: General existence results for random dynamical systems in Banach spaces, Discrete Contin. Dyn. Syst., 37 (2017), 6383-6403.  doi: 10.3934/dcds.2017277.

[8]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.

[9]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: Theoretical results, Commun. Pure Appl. Anal., 12 (2013), 3047-3071.  doi: 10.3934/cpaa.2013.12.3047.

[10]

J. W. Cholewa and R. Czaja, Lattice dynamical systems: Dissipative mechanism and fractal dimension of global and exponential attractors, J. Evol. Equ., 20 (2020), 485-515.  doi: 10.1007/s00028-019-00535-3.

[11]

J. W. Cholewa and R. Czaja, On fractal dimension of global and exponential attractors for dissipative higher order parabolic problems in $\mathbb{R}^{N}$ with general potential, Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics, (2021), 293–314. doi: 10.1007/978-3-030-50302-4_13.

[12]

I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, Universitext. Springer, Cham, 2015. doi: 10.1007/978-3-319-22903-4.

[13]

I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, Mem. Amer. Math. Soc. 195 (2008). doi: 10.1090/memo/0912.

[14]

R. Czaja, Bi-space pullback attractors for closed processes, São Paulo J. Math. Sci., 6 (2012), 227-246.  doi: 10.11606/issn.2316-9028.v6i2p227-246.

[15]

R. Czaja, Pullback exponential attractors with admissible exponential growth in the past, Nonlinear Anal., 104 (2014), 90-108.  doi: 10.1016/j.na.2014.03.020.

[16]

R. Czaja and M. Efendiev, Pullback exponential attractors for nonautonomous equations, Part I: Semilinear parabolic problems, J. Math. Anal. Appl., 381 (2011), 744-765.  doi: 10.1016/j.jmaa.2011.03.053.

[17]

X. Han, Exponential attractors for lattice dynamical systems in weighted spaces, Discrete Contin. Dyn. Syst., 31 (2011), 445-467.  doi: 10.3934/dcds.2011.31.445.

[18]

X. Han and P. E. Kloeden, Non-autonomous lattice systems with switching effects and delayed recovery, J. Differential Equations, 261 (2016), 2986-3009.  doi: 10.1016/j.jde.2016.05.015.

[19]

X. LiK. Wei and H. Zhang, Exponential attractors for lattice dynamical systems in weighted spaces, Acta Appl. Math., 114 (2011), 157-172.  doi: 10.1007/s10440-011-9606-x.

[20]

X. Li and C. Zhong, Attractors for partly dissipative lattice dynamic systems in $\ell^2\times\ell^2$, J. Comput. Appl. Math., 177 (2005), 159-174.  doi: 10.1016/j.cam.2004.09.014.

[21]

T. F. MaR. N. Monteiro and A. C. Pereira, Pullback dynamics of non-autonomous Timoshenko systems, Appl. Math. Optim., 80 (2019), 391-413.  doi: 10.1007/s00245-017-9469-2.

[22]

P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems, Nonlinear Anal., 71 (2009), 3956-3963.  doi: 10.1016/j.na.2009.02.065.

[23]

B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Phys. D, 128 (1999), 41-52.  doi: 10.1016/S0167-2789(98)00304-2.

[24]

B. Wang, Asymptotic behavior of non-autonomous lattice systems, J. Math. Anal. Appl., 331 (2007), 121-136.  doi: 10.1016/j.jmaa.2006.08.070.

[25]

S. Zhou, Attractors for first order dissipative lattice dynamical systems, Phys. D, 178 (2003), 51-61.  doi: 10.1016/S0167-2789(02)00807-2.

[26]

S. Zhou, Attractors and approximations for lattice dynamical systems, J. Differential Equations, 200 (2004), 342-368.  doi: 10.1016/j.jde.2004.02.005.

[27]

S. Zhou and X. Han, Pullback exponential attractors for non-autonomous lattice systems, J. Dynam. Differential Equations, 24 (2012), 601-631.  doi: 10.1007/s10884-012-9260-7.

[28]

S. Zhou and W. Shi, Attractors and dimension of dissipative lattice systems, J. Differential Equations, 224 (2006), 172-204.  doi: 10.1016/j.jde.2005.06.024.

show all references

References:
[1]

A. Y. Abdallah, Exponential attractors for first-order lattice dynamical systems, J. Math. Anal. Appl., 339 (2008), 217-224.  doi: 10.1016/j.jmaa.2007.06.054.

[2]

A. Y. Abdallah, Uniform exponential attractors for first order non-autonomous lattice dynamical systems, J. Differential Equations, 251 (2011), 1489-1504.  doi: 10.1016/j.jde.2011.05.030.

[3]

A. Y. Abdallah, Attractors for first order lattice systems with almost periodic nonlinear part, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 1241-1255.  doi: 10.3934/dcdsb.2019218.

[4]

P. W. BatesK. Lu and B. Wang, Attractors for lattice dynamical systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 143-153.  doi: 10.1142/S0218127401002031.

[5]

T. CaraballoG. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.  doi: 10.1016/j.na.2005.03.111.

[6]

T. CaraballoF. Morillas and J. Valero, Asymptotic behaviour of a logistic lattice system, Discrete Contin. Dyn. Syst., 34 (2014), 4019-4037.  doi: 10.3934/dcds.2014.34.4019.

[7]

T. Caraballo and S. Sonner, Random pullback exponential attractors: General existence results for random dynamical systems in Banach spaces, Discrete Contin. Dyn. Syst., 37 (2017), 6383-6403.  doi: 10.3934/dcds.2017277.

[8]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.

[9]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: Theoretical results, Commun. Pure Appl. Anal., 12 (2013), 3047-3071.  doi: 10.3934/cpaa.2013.12.3047.

[10]

J. W. Cholewa and R. Czaja, Lattice dynamical systems: Dissipative mechanism and fractal dimension of global and exponential attractors, J. Evol. Equ., 20 (2020), 485-515.  doi: 10.1007/s00028-019-00535-3.

[11]

J. W. Cholewa and R. Czaja, On fractal dimension of global and exponential attractors for dissipative higher order parabolic problems in $\mathbb{R}^{N}$ with general potential, Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics, (2021), 293–314. doi: 10.1007/978-3-030-50302-4_13.

[12]

I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, Universitext. Springer, Cham, 2015. doi: 10.1007/978-3-319-22903-4.

[13]

I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, Mem. Amer. Math. Soc. 195 (2008). doi: 10.1090/memo/0912.

[14]

R. Czaja, Bi-space pullback attractors for closed processes, São Paulo J. Math. Sci., 6 (2012), 227-246.  doi: 10.11606/issn.2316-9028.v6i2p227-246.

[15]

R. Czaja, Pullback exponential attractors with admissible exponential growth in the past, Nonlinear Anal., 104 (2014), 90-108.  doi: 10.1016/j.na.2014.03.020.

[16]

R. Czaja and M. Efendiev, Pullback exponential attractors for nonautonomous equations, Part I: Semilinear parabolic problems, J. Math. Anal. Appl., 381 (2011), 744-765.  doi: 10.1016/j.jmaa.2011.03.053.

[17]

X. Han, Exponential attractors for lattice dynamical systems in weighted spaces, Discrete Contin. Dyn. Syst., 31 (2011), 445-467.  doi: 10.3934/dcds.2011.31.445.

[18]

X. Han and P. E. Kloeden, Non-autonomous lattice systems with switching effects and delayed recovery, J. Differential Equations, 261 (2016), 2986-3009.  doi: 10.1016/j.jde.2016.05.015.

[19]

X. LiK. Wei and H. Zhang, Exponential attractors for lattice dynamical systems in weighted spaces, Acta Appl. Math., 114 (2011), 157-172.  doi: 10.1007/s10440-011-9606-x.

[20]

X. Li and C. Zhong, Attractors for partly dissipative lattice dynamic systems in $\ell^2\times\ell^2$, J. Comput. Appl. Math., 177 (2005), 159-174.  doi: 10.1016/j.cam.2004.09.014.

[21]

T. F. MaR. N. Monteiro and A. C. Pereira, Pullback dynamics of non-autonomous Timoshenko systems, Appl. Math. Optim., 80 (2019), 391-413.  doi: 10.1007/s00245-017-9469-2.

[22]

P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems, Nonlinear Anal., 71 (2009), 3956-3963.  doi: 10.1016/j.na.2009.02.065.

[23]

B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Phys. D, 128 (1999), 41-52.  doi: 10.1016/S0167-2789(98)00304-2.

[24]

B. Wang, Asymptotic behavior of non-autonomous lattice systems, J. Math. Anal. Appl., 331 (2007), 121-136.  doi: 10.1016/j.jmaa.2006.08.070.

[25]

S. Zhou, Attractors for first order dissipative lattice dynamical systems, Phys. D, 178 (2003), 51-61.  doi: 10.1016/S0167-2789(02)00807-2.

[26]

S. Zhou, Attractors and approximations for lattice dynamical systems, J. Differential Equations, 200 (2004), 342-368.  doi: 10.1016/j.jde.2004.02.005.

[27]

S. Zhou and X. Han, Pullback exponential attractors for non-autonomous lattice systems, J. Dynam. Differential Equations, 24 (2012), 601-631.  doi: 10.1007/s10884-012-9260-7.

[28]

S. Zhou and W. Shi, Attractors and dimension of dissipative lattice systems, J. Differential Equations, 224 (2006), 172-204.  doi: 10.1016/j.jde.2005.06.024.

[1]

Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations and Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241

[2]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[3]

Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195

[4]

T. Caraballo, J. A. Langa, J. Valero. Structure of the pullback attractor for a non-autonomous scalar differential inclusion. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 979-994. doi: 10.3934/dcdss.2016037

[5]

Zeqi Zhu, Caidi Zhao. Pullback attractor and invariant measures for the three-dimensional regularized MHD equations. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1461-1477. doi: 10.3934/dcds.2018060

[6]

Mustapha Yebdri. Existence of $ \mathcal{D}- $pullback attractor for an infinite dimensional dynamical system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 167-198. doi: 10.3934/dcdsb.2021036

[7]

Shulin Wang, Yangrong Li. Probabilistic continuity of a pullback random attractor in time-sample. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2699-2722. doi: 10.3934/dcdsb.2020028

[8]

Xiaoying Han, Peter E. Kloeden. Pullback and forward dynamics of nonautonomous Laplacian lattice systems on weighted spaces. Discrete and Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021143

[9]

José A. Langa, Alain Miranville, José Real. Pullback exponential attractors. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1329-1357. doi: 10.3934/dcds.2010.26.1329

[10]

Linfang Liu, Xianlong Fu, Yuncheng You. Pullback attractor in $H^{1}$ for nonautonomous stochastic reaction-diffusion equations on $\mathbb{R}^n$. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3629-3651. doi: 10.3934/dcdsb.2017143

[11]

Yangrong Li, Lianbing She, Jinyan Yin. Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1535-1557. doi: 10.3934/dcdsb.2018058

[12]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[13]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[14]

Jason S. Howell, Irena Lasiecka, Justin T. Webster. Quasi-stability and exponential attractors for a non-gradient system---applications to piston-theoretic plates with internal damping. Evolution Equations and Control Theory, 2016, 5 (4) : 567-603. doi: 10.3934/eect.2016020

[15]

Theodore Tachim Medjo. Pullback $ \mathbb{V}-$attractor of a three dimensional globally modified two-phase flow model. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2141-2169. doi: 10.3934/dcds.2018088

[16]

Zhijian Yang, Yanan Li. Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous kirchhoff wave models. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2629-2653. doi: 10.3934/dcds.2018111

[17]

Sana Netchaoui, Mohamed Ali Hammami, Tomás Caraballo. Pullback exponential attractors for differential equations with delay. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1345-1358. doi: 10.3934/dcdss.2020367

[18]

Mohamed Ali Hammami, Lassaad Mchiri, Sana Netchaoui, Stefanie Sonner. Pullback exponential attractors for differential equations with variable delays. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 301-319. doi: 10.3934/dcdsb.2019183

[19]

Yujun Zhu. Topological quasi-stability of partially hyperbolic diffeomorphisms under random perturbations. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 869-882. doi: 10.3934/dcds.2014.34.869

[20]

Luci H. Fatori, Marcio A. Jorge Silva, Vando Narciso. Quasi-stability property and attractors for a semilinear Timoshenko system. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6117-6132. doi: 10.3934/dcds.2016067

2020 Impact Factor: 1.327

Article outline

[Back to Top]