Pulse stabilization of cycles with Prediction-Based Control including noise and stochastic stabilization of maps with multiple equilibrium points is analyzed for continuous but, generally, non-smooth maps. Sufficient conditions of global stabilization are obtained. Introduction of noise can relax restrictions on the control intensity. We estimate how the control can be decreased with noise and verify it numerically.
Citation: |
Figure 4. A bifurcation diagram for the third iterate of the Ricker map with $ r = 3.5 $ for $ \alpha\in (0.75, 0.9) $ and (left) without noise, (right) $ \ell = 0.06 $. The last bifurcation leading to two stable equilibrium points occurs for $ \alpha \approx 0.88 $ in the deterministic case and $ \alpha<0.86 $ in the stochastic case
Figure 6. A bifurcation diagram for the map defined in \protect{(4.1)} with $ \alpha \in (0.45, 0.65) $ and (left) no noise, we have two stable equilibrium points starting from $ \alpha\approx 0.605 $, (right) for Bernoulli noise with $ \ell = 0.04 $, the last bifurcation happens for smaller $ \alpha\approx 0.535 $. Here the two attractors correspond to two stable equilibrium points with separate basins of attraction, not to a cycle
[1] |
M. Benaïm and S. J. Schreiber, Persistence and extinction for stochastic ecological models with internal and external variables, J. Math. Biol., 79 (2019), 393-431.
doi: 10.1007/s00285-019-01361-4.![]() ![]() ![]() |
[2] |
E. Braverman, C. Kelly and A. Rodkina, Stabilisation of difference equations with noisy prediction-based control, Physica D, 326 (2016), 21-31.
doi: 10.1016/j.physd.2016.02.004.![]() ![]() ![]() |
[3] |
E. Braverman, C. Kelly and A. Rodkina, Stabilization of cycles with stochastic prediction-based and target-oriented control, Chaos, 30 (2020), 093116, 15 pp.
doi: 10.1063/1.5145304.![]() ![]() ![]() |
[4] |
E. Braverman and E. Liz, On stabilization of equilibria using predictive control with and without pulses, Comput. Math. Appl., 64 (2012), 2192-2201.
doi: 10.1016/j.camwa.2012.01.013.![]() ![]() ![]() |
[5] |
E. Braverman and A. Rodkina, Stochastic control stabilizing unstable or chaotic maps, J. Difference Equ. Appl., 25 (2019), 151-178.
doi: 10.1080/10236198.2018.1561882.![]() ![]() |
[6] |
E. Braverman and A. Rodkina, Stochastic difference equations with the Allee effect, Discrete Contin. Dyn. Syst. Ser. A, 36 (2016), 5929-5949.
doi: 10.3934/dcds.2016060.![]() ![]() ![]() |
[7] |
P. Cull, Global stability of population models, Bull. Math. Biol., 43 (1981), 47-58.
![]() ![]() |
[8] |
E. Liz and D. Franco, Global stabilization of fixed points using predictive control, Chaos, 20 (2010), 023124, 9 pages.
doi: 10.1063/1.3432558.![]() ![]() ![]() |
[9] |
E. Liz and C. Pótzsche, PBC-based pulse stabilization of periodic orbits, Phys. D, 272 (2014), 26-38.
doi: 10.1016/j.physd.2014.01.003.![]() ![]() ![]() |
[10] |
P. Hitczenko and G. Medvedev, Stability of equilibria of randomly perturbed maps, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 369-381.
doi: 10.3934/dcdsb.2017017.![]() ![]() ![]() |
[11] |
M. Nag and S. Poria, Synchronization in a network of delay coupled maps with stochastically switching topologies, Chaos Solitons Fractals, 91 (2016), 9-16.
doi: 10.1016/j.chaos.2016.04.022.![]() ![]() ![]() |
[12] |
M. Porfiri and I. Belykh, Memory matters in synchronization of stochastically coupled maps, SIAM J. Appl. Dyn. Syst., 16 (2017), 1372-1396.
doi: 10.1137/17M111136X.![]() ![]() ![]() |
[13] |
S. J. Schreiber, Coexistence in the face of uncertainty, Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science, 349–384, Fields Inst. Commun., 79, Springer, New York, 2017.
doi: 10.1007/978-1-4939-6969-2_12.![]() ![]() ![]() |
[14] |
D. Singer, Stable orbits and bifurcation of maps of the interval, SIAM J. Appl. Math., 35 (1978), 260-267.
doi: 10.1137/0135020.![]() ![]() ![]() |
[15] |
A. N. Shiryaev, Probability, (2nd edition), Springer, Berlin, 1996.
doi: 10.1007/978-1-4757-2539-1.![]() ![]() ![]() |
[16] |
T. Ushio and S. Yamamoto, Prediction-based control of chaos, Phys. Lett. A, 264 (1999), 30-35.
doi: 10.1016/S0375-9601(99)00782-3.![]() ![]() ![]() |
The second iteration of the Ricker map for
The fourth iteration of the Ricker map for
A bifurcation diagram for the second iterate of the Ricker map with
A bifurcation diagram for the third iterate of the Ricker map with
The graph of the map defined in (4.1), together with
A bifurcation diagram for the map defined in \protect{(4.1)} with