• Previous Article
    On the well-posedness of the anisotropically-reduced two-dimensional Kuramoto-Sivashinsky Equation
  • DCDS-B Home
  • This Issue
  • Next Article
    Global well-posedness and exponential stability for the fermion equation in weighted Sobolev spaces
doi: 10.3934/dcdsb.2021282
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

On weak martingale solutions to a stochastic Allen-Cahn-Navier-Stokes model with inertial effects

Department of Mathematics, Florida International University, DM413B, MMC, Miami, Florida 33199, USA

Received  April 2021 Revised  September 2021 Early access November 2021

We consider a stochastic Allen-Cahn-Navier-Stokes equations with inertial effects in a bounded domain $ D\subset\mathbb{R}^{d} $, $ d = 2, 3 $, driven by a multiplicative noise. The existence of a global weak martingale solution is proved under non-Lipschitz assumptions on the coefficients. The construction of the solution is based on the Faedo-Galerkin approximation, compactness method and the Skorokhod representation theorem.

Citation: T. Tachim Medjo. On weak martingale solutions to a stochastic Allen-Cahn-Navier-Stokes model with inertial effects. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021282
References:
[1]

H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal., 194 (2009), 463-506.  doi: 10.1007/s00205-008-0160-2.  Google Scholar

[2]

S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metal., 27 (1979), 1085-1095.  doi: 10.1016/0001-6160(79)90196-2.  Google Scholar

[3]

A. Bensoussan, Stochastic Navier-Stokes equations, Acta. Appl. Math, 38 (1995), 267-304.  doi: 10.1007/BF00996149.  Google Scholar

[4]

A. Bensoussan and R. Temam, Équations stochastiques de type Navier-Stokes, J. Funct. Anal., 13 (1973), 195-222.  doi: 10.1016/0022-1236(73)90045-1.  Google Scholar

[5]

G. BonfantiM. Frémond and F. Luterotti, Existence and uniqueness results to a phase transition model based on microscopic accelerations and movements, Nonlinear Anal. Real World Appl., 5 (2004), 123-140.  doi: 10.1016/S1468-1218(03)00021-X.  Google Scholar

[6]

Z. BrzeźniakB. Goldys and T. Jegaraj, Weak solution of a stochastic landau-Lifshitz-Gilbert equation, Appl. Math. Res., 2013 (2013), 1-33.  doi: 10.1093/amrx/abs009.  Google Scholar

[7]

Z. BrzeźniakE. Hausenblas and P. A. Razafimandimby, Some results on the penalised nematic liquid crystals driven by multiplicative noise, Stoch. Partial Differ. Equ. Anal. Comput., 7 (2019), 417-475.  doi: 10.1007/s40072-018-0131-z.  Google Scholar

[8]

E. Feireisl D. Breit and M. Hofmanová, Stochastically Forced Compressible Fluid Flows, De Gruyter Series in Applied and Numerical Mathematics, 3. De Gruyter, Berlin, 2018.  Google Scholar

[9]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, 2$^{nd}$ edition, Cambridge University Press, Cambridge, 2014.  Google Scholar

[10]

G. Deugoué and J. K. Djoko, On the time discretization for the globally modified 3-dimensional Navier-Stokes equations, J. Comput. Appl. Math., 235 (2011), 2015-2029.  doi: 10.1016/j.cam.2010.10.003.  Google Scholar

[11]

G. DeugouéB. Jidjou Moghomye and T. Tachim Medjo, Existence of a solution to the stochastic nonlocal Cahn-Hilliard Navier-Stokes model via a splitting-up method, Nonlinearity, 33 (2020), 3424-3469.  doi: 10.1088/1361-6544/ab8020.  Google Scholar

[12]

G. DeugouéA. Ndongmo Ngana and T. Tachim Medjo, Martingale solutions to stochastic nonlocal Cahn-Hilliard-Navier-Stokes equations with multiplicative noise of jump type, Phys. D, 398 (2019), 23-68.  doi: 10.1016/j.physd.2019.05.012.  Google Scholar

[13]

G. DeugouéA. Ndongmo Ngana and T. Tachim Medjo, On the strong solutions for a stochastic 2D nonlocal Cahn-Hilliard-Navier-Stokes model, Dyn. Partial Differ. Equ., 17 (2020), 19-60.  doi: 10.4310/DPDE.2020.v17.n1.a2.  Google Scholar

[14]

G. DeugouéP. A. Razafimandimby and M. Sango, On the 3-D stochastic magnetohydrodynamic-$\alpha$ model, Stochastic Process. Appl., 122 (2012), 2211-2248.  doi: 10.1016/j.spa.2012.03.002.  Google Scholar

[15]

G. Deugoué and T. Tachim Medjo, On the convergence for the 3D globally modified Cahn-Hilliard-Navier-Stokes equations, J. Differential Equations, 265 (2018), 545-592.   Google Scholar

[16]

G. Deugoué and T. Tachim Medjo, The stochastic 3D globally modified Navier-Stokes Equations: Existence, uniqueness and asymptotic behavior, Commun. Pure Appl. Anal., 17 (2018), 2593-2621.  doi: 10.3934/cpaa.2018123.  Google Scholar

[17]

G. Deugoué and T. Tachim Medjo, On a stochastic 2D Cahn-Hilliard-Navier-Stokes system driven by jump noise, Commun. Stoch. Anal., 13 (2019), Art. 5, 29 pp. doi: 10.31390/cosa.13.1.05.  Google Scholar

[18]

G. Favre and G. Schimperna, On a Navier-Stokes-Allen-Cahn model with inertial effects, J. Math. Anal. Appl., 475 (2019), 811-838.  doi: 10.1016/j.jmaa.2019.02.074.  Google Scholar

[19]

E. FeireislE. RoccaG. Schimperna and A. Zarnescu, On a hyperbolic system arising in liquid crystals modeling, J. Hyperbolic Differ. Equ., 15 (2018), 15-35.  doi: 10.1142/S0219891618500029.  Google Scholar

[20]

F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995), 307-391.  doi: 10.1007/BF01192467.  Google Scholar

[21]

M. Frémond, Non-Smooth Thermomechanics, Springer-Verlag, Berlin, 2002. Google Scholar

[22]

C. Gal and M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 401-436.  doi: 10.1016/j.anihpc.2009.11.013.  Google Scholar

[23]

C. Gal and M. Grasselli, Longtime behavior for a model of homogeneous incompressible two-phase flows, Discrete Contin. Dyn. Syst., 28 (2010), 1-39.  doi: 10.3934/dcds.2010.28.1.  Google Scholar

[24]

C. Gal and M. Grasselli, Trajectory attractors for binary fluid mixtures in 3D, Chin. Ann. Math. Ser. B, 31 (2010), 655-678.  doi: 10.1007/s11401-010-0603-6.  Google Scholar

[25]

F. Gay-Balmaz and C. Tronci, The helicity and vorticity of liquid-crystal flows, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 467 (2011), 1197-1213.  doi: 10.1098/rspa.2010.0309.  Google Scholar

[26]

M. GrasselliA. MiranvilleV. Pata and S. Zelik, Well-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potentials, Math. Nachr., 280 (2007), 1475-1509.  doi: 10.1002/mana.200510560.  Google Scholar

[27]

M. Grasselli and V. Pata, Existence of a universal attractor for a parabolic-hyperbolic phase-field system, Adv. Math. Sci. Appl., 13 (2003), 443-459.   Google Scholar

[28]

M. GrasselliG. Schimperna and S. Zelik, On the 2D Cahn-Hilliard equation with inertial term, Comm. Partial Differential Equations, 34 (2009), 137-170.  doi: 10.1080/03605300802608247.  Google Scholar

[29]

M. Grasselli and H. Wu, Finite-dimensional global attractor for a system modeling the 2D nematic liquid crystal flow, Z. Angew. Math. Phys., 62 (2011), 979-992.  doi: 10.1007/s00033-011-0157-9.  Google Scholar

[30]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 2$^nd$ edition, North-Holland, Kodansha, 1989. Google Scholar

[31]

O. Kallenberg, Foundations of Modern Probability, Probability and its Applications (New York), Springer-Verlag, New York, 1997.  Google Scholar

[32]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, New York, 1970.  Google Scholar

[33]

C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a {F}ourier-spectral method, Phys. D, 179 (2003), 211-228.  doi: 10.1016/S0167-2789(03)00030-7.  Google Scholar

[34]

E. Motyl, Stochastic Navier-Stokes equations driven by L$\acute{e}$vy noise in unbounded 3D domains, Potential Anal., 38 (2013), 863-912.  doi: 10.1007/s11118-012-9300-2.  Google Scholar

[35]

K. R. Parthasarathy, Probability Measures on Metric Spaces, Probability and Mathematical Statistics, No. 3 Academic Press, Inc., New York-London 1967.  Google Scholar

[36]

C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics, 1905. Springer, Berlin, 2007.  Google Scholar

[37]

P. A. Razafimandimby and M. Sango, Existence and large time behavior for a stochastic model of modified magnetohydrodynamic equations, Z. Angew. Math. Phys., 66 (2015), 2197-2235.  doi: 10.1007/s00033-015-0534-x.  Google Scholar

[38]

M. Sango, Magnetohydrodynamic turbulent flows: Existence results, Phys. D, 239 (2010), 912-923.  doi: 10.1016/j.physd.2010.01.009.  Google Scholar

[39]

A. V. Skorokhod, Studies in the Theory of Random Processes. Translated from the Russian by Scripta-Technica, Inc., 2$^{nd}$ edition, Addison-Wesley Publishing Co., Reading, Mass, 1965.  Google Scholar

[40]

T. Tachim Medjo, On the existence and uniqueness of solution to a stochastic 2D Cahn-Hilliard-Navier-Stokes model, J. Differential Equations, 263 (2017), 1028-1054.  doi: 10.1016/j.jde.2017.03.008.  Google Scholar

[41]

T. Tachim Medjo, A note on the regularity of weak solutions to the coupled 2D {A}llen-Cahn-Navier-Stokes system, J. Appl. Anal., 15 (2019), 111-117.  doi: 10.1515/jaa-2019-0012.  Google Scholar

[42]

T. Tachim Medjo, On the existence and uniqueness of solution to a stochastic 2D Allen-Cahn-Navier-Stokes model, Stoch. Dyn., 19 (2019), 1950007, 28pp. doi: 10.1142/S0219493719500072.  Google Scholar

[43]

T. Tachim Medjo, On the weak solutions to a 3D stochastic Cahn-Hilliard-Navier-Stokes model, Z. Angew. Math. Phys., 71 (2020), 23pp. doi: 10.1007/s00033-019-1237-5.  Google Scholar

[44]

R. Temam, Infinite Dynamical Systems in Mechanics and Physics, 2$^{nd}$ edition, volume 68. Appl. Math. Sci., Springer-Verlag, New York, second edition, 1997.  Google Scholar

[45]

A. W. van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes, Springer Series in Statistics, Springer-Verlag, New York, 1996. Google Scholar

show all references

References:
[1]

H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal., 194 (2009), 463-506.  doi: 10.1007/s00205-008-0160-2.  Google Scholar

[2]

S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metal., 27 (1979), 1085-1095.  doi: 10.1016/0001-6160(79)90196-2.  Google Scholar

[3]

A. Bensoussan, Stochastic Navier-Stokes equations, Acta. Appl. Math, 38 (1995), 267-304.  doi: 10.1007/BF00996149.  Google Scholar

[4]

A. Bensoussan and R. Temam, Équations stochastiques de type Navier-Stokes, J. Funct. Anal., 13 (1973), 195-222.  doi: 10.1016/0022-1236(73)90045-1.  Google Scholar

[5]

G. BonfantiM. Frémond and F. Luterotti, Existence and uniqueness results to a phase transition model based on microscopic accelerations and movements, Nonlinear Anal. Real World Appl., 5 (2004), 123-140.  doi: 10.1016/S1468-1218(03)00021-X.  Google Scholar

[6]

Z. BrzeźniakB. Goldys and T. Jegaraj, Weak solution of a stochastic landau-Lifshitz-Gilbert equation, Appl. Math. Res., 2013 (2013), 1-33.  doi: 10.1093/amrx/abs009.  Google Scholar

[7]

Z. BrzeźniakE. Hausenblas and P. A. Razafimandimby, Some results on the penalised nematic liquid crystals driven by multiplicative noise, Stoch. Partial Differ. Equ. Anal. Comput., 7 (2019), 417-475.  doi: 10.1007/s40072-018-0131-z.  Google Scholar

[8]

E. Feireisl D. Breit and M. Hofmanová, Stochastically Forced Compressible Fluid Flows, De Gruyter Series in Applied and Numerical Mathematics, 3. De Gruyter, Berlin, 2018.  Google Scholar

[9]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, 2$^{nd}$ edition, Cambridge University Press, Cambridge, 2014.  Google Scholar

[10]

G. Deugoué and J. K. Djoko, On the time discretization for the globally modified 3-dimensional Navier-Stokes equations, J. Comput. Appl. Math., 235 (2011), 2015-2029.  doi: 10.1016/j.cam.2010.10.003.  Google Scholar

[11]

G. DeugouéB. Jidjou Moghomye and T. Tachim Medjo, Existence of a solution to the stochastic nonlocal Cahn-Hilliard Navier-Stokes model via a splitting-up method, Nonlinearity, 33 (2020), 3424-3469.  doi: 10.1088/1361-6544/ab8020.  Google Scholar

[12]

G. DeugouéA. Ndongmo Ngana and T. Tachim Medjo, Martingale solutions to stochastic nonlocal Cahn-Hilliard-Navier-Stokes equations with multiplicative noise of jump type, Phys. D, 398 (2019), 23-68.  doi: 10.1016/j.physd.2019.05.012.  Google Scholar

[13]

G. DeugouéA. Ndongmo Ngana and T. Tachim Medjo, On the strong solutions for a stochastic 2D nonlocal Cahn-Hilliard-Navier-Stokes model, Dyn. Partial Differ. Equ., 17 (2020), 19-60.  doi: 10.4310/DPDE.2020.v17.n1.a2.  Google Scholar

[14]

G. DeugouéP. A. Razafimandimby and M. Sango, On the 3-D stochastic magnetohydrodynamic-$\alpha$ model, Stochastic Process. Appl., 122 (2012), 2211-2248.  doi: 10.1016/j.spa.2012.03.002.  Google Scholar

[15]

G. Deugoué and T. Tachim Medjo, On the convergence for the 3D globally modified Cahn-Hilliard-Navier-Stokes equations, J. Differential Equations, 265 (2018), 545-592.   Google Scholar

[16]

G. Deugoué and T. Tachim Medjo, The stochastic 3D globally modified Navier-Stokes Equations: Existence, uniqueness and asymptotic behavior, Commun. Pure Appl. Anal., 17 (2018), 2593-2621.  doi: 10.3934/cpaa.2018123.  Google Scholar

[17]

G. Deugoué and T. Tachim Medjo, On a stochastic 2D Cahn-Hilliard-Navier-Stokes system driven by jump noise, Commun. Stoch. Anal., 13 (2019), Art. 5, 29 pp. doi: 10.31390/cosa.13.1.05.  Google Scholar

[18]

G. Favre and G. Schimperna, On a Navier-Stokes-Allen-Cahn model with inertial effects, J. Math. Anal. Appl., 475 (2019), 811-838.  doi: 10.1016/j.jmaa.2019.02.074.  Google Scholar

[19]

E. FeireislE. RoccaG. Schimperna and A. Zarnescu, On a hyperbolic system arising in liquid crystals modeling, J. Hyperbolic Differ. Equ., 15 (2018), 15-35.  doi: 10.1142/S0219891618500029.  Google Scholar

[20]

F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995), 307-391.  doi: 10.1007/BF01192467.  Google Scholar

[21]

M. Frémond, Non-Smooth Thermomechanics, Springer-Verlag, Berlin, 2002. Google Scholar

[22]

C. Gal and M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 401-436.  doi: 10.1016/j.anihpc.2009.11.013.  Google Scholar

[23]

C. Gal and M. Grasselli, Longtime behavior for a model of homogeneous incompressible two-phase flows, Discrete Contin. Dyn. Syst., 28 (2010), 1-39.  doi: 10.3934/dcds.2010.28.1.  Google Scholar

[24]

C. Gal and M. Grasselli, Trajectory attractors for binary fluid mixtures in 3D, Chin. Ann. Math. Ser. B, 31 (2010), 655-678.  doi: 10.1007/s11401-010-0603-6.  Google Scholar

[25]

F. Gay-Balmaz and C. Tronci, The helicity and vorticity of liquid-crystal flows, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 467 (2011), 1197-1213.  doi: 10.1098/rspa.2010.0309.  Google Scholar

[26]

M. GrasselliA. MiranvilleV. Pata and S. Zelik, Well-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potentials, Math. Nachr., 280 (2007), 1475-1509.  doi: 10.1002/mana.200510560.  Google Scholar

[27]

M. Grasselli and V. Pata, Existence of a universal attractor for a parabolic-hyperbolic phase-field system, Adv. Math. Sci. Appl., 13 (2003), 443-459.   Google Scholar

[28]

M. GrasselliG. Schimperna and S. Zelik, On the 2D Cahn-Hilliard equation with inertial term, Comm. Partial Differential Equations, 34 (2009), 137-170.  doi: 10.1080/03605300802608247.  Google Scholar

[29]

M. Grasselli and H. Wu, Finite-dimensional global attractor for a system modeling the 2D nematic liquid crystal flow, Z. Angew. Math. Phys., 62 (2011), 979-992.  doi: 10.1007/s00033-011-0157-9.  Google Scholar

[30]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 2$^nd$ edition, North-Holland, Kodansha, 1989. Google Scholar

[31]

O. Kallenberg, Foundations of Modern Probability, Probability and its Applications (New York), Springer-Verlag, New York, 1997.  Google Scholar

[32]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, New York, 1970.  Google Scholar

[33]

C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a {F}ourier-spectral method, Phys. D, 179 (2003), 211-228.  doi: 10.1016/S0167-2789(03)00030-7.  Google Scholar

[34]

E. Motyl, Stochastic Navier-Stokes equations driven by L$\acute{e}$vy noise in unbounded 3D domains, Potential Anal., 38 (2013), 863-912.  doi: 10.1007/s11118-012-9300-2.  Google Scholar

[35]

K. R. Parthasarathy, Probability Measures on Metric Spaces, Probability and Mathematical Statistics, No. 3 Academic Press, Inc., New York-London 1967.  Google Scholar

[36]

C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics, 1905. Springer, Berlin, 2007.  Google Scholar

[37]

P. A. Razafimandimby and M. Sango, Existence and large time behavior for a stochastic model of modified magnetohydrodynamic equations, Z. Angew. Math. Phys., 66 (2015), 2197-2235.  doi: 10.1007/s00033-015-0534-x.  Google Scholar

[38]

M. Sango, Magnetohydrodynamic turbulent flows: Existence results, Phys. D, 239 (2010), 912-923.  doi: 10.1016/j.physd.2010.01.009.  Google Scholar

[39]

A. V. Skorokhod, Studies in the Theory of Random Processes. Translated from the Russian by Scripta-Technica, Inc., 2$^{nd}$ edition, Addison-Wesley Publishing Co., Reading, Mass, 1965.  Google Scholar

[40]

T. Tachim Medjo, On the existence and uniqueness of solution to a stochastic 2D Cahn-Hilliard-Navier-Stokes model, J. Differential Equations, 263 (2017), 1028-1054.  doi: 10.1016/j.jde.2017.03.008.  Google Scholar

[41]

T. Tachim Medjo, A note on the regularity of weak solutions to the coupled 2D {A}llen-Cahn-Navier-Stokes system, J. Appl. Anal., 15 (2019), 111-117.  doi: 10.1515/jaa-2019-0012.  Google Scholar

[42]

T. Tachim Medjo, On the existence and uniqueness of solution to a stochastic 2D Allen-Cahn-Navier-Stokes model, Stoch. Dyn., 19 (2019), 1950007, 28pp. doi: 10.1142/S0219493719500072.  Google Scholar

[43]

T. Tachim Medjo, On the weak solutions to a 3D stochastic Cahn-Hilliard-Navier-Stokes model, Z. Angew. Math. Phys., 71 (2020), 23pp. doi: 10.1007/s00033-019-1237-5.  Google Scholar

[44]

R. Temam, Infinite Dynamical Systems in Mechanics and Physics, 2$^{nd}$ edition, volume 68. Appl. Math. Sci., Springer-Verlag, New York, second edition, 1997.  Google Scholar

[45]

A. W. van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes, Springer Series in Statistics, Springer-Verlag, New York, 1996. Google Scholar

[1]

Kumarasamy Sakthivel, Sivaguru S. Sritharan. Martingale solutions for stochastic Navier-Stokes equations driven by Lévy noise. Evolution Equations & Control Theory, 2012, 1 (2) : 355-392. doi: 10.3934/eect.2012.1.355

[2]

Yinghua Li, Shijin Ding, Mingxia Huang. Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1507-1523. doi: 10.3934/dcdsb.2016009

[3]

Yinnian He, R. M.M. Mattheij. Reformed post-processing Galerkin method for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 369-387. doi: 10.3934/dcdsb.2007.8.369

[4]

Kaitai Li, Yanren Hou. Fourier nonlinear Galerkin method for Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 1996, 2 (4) : 497-524. doi: 10.3934/dcds.1996.2.497

[5]

Christopher P. Grant. Grain sizes in the discrete Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems, 2001, 7 (1) : 127-146. doi: 10.3934/dcds.2001.7.127

[6]

Jie Shen, Xiaofeng Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1669-1691. doi: 10.3934/dcds.2010.28.1669

[7]

Alain Miranville, Wafa Saoud, Raafat Talhouk. On the Cahn-Hilliard/Allen-Cahn equations with singular potentials. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3633-3651. doi: 10.3934/dcdsb.2018308

[8]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[9]

Hirokazu Ninomiya, Masaharu Taniguchi. Global stability of traveling curved fronts in the Allen-Cahn equations. Discrete & Continuous Dynamical Systems, 2006, 15 (3) : 819-832. doi: 10.3934/dcds.2006.15.819

[10]

Yinnian He, Kaitai Li. Nonlinear Galerkin approximation of the two dimensional exterior Navier-Stokes problem. Discrete & Continuous Dynamical Systems, 1996, 2 (4) : 467-482. doi: 10.3934/dcds.1996.2.467

[11]

Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic & Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006

[12]

Michele Coti Zelati. Remarks on the approximation of the Navier-Stokes equations via the implicit Euler scheme. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2829-2838. doi: 10.3934/cpaa.2013.12.2829

[13]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[14]

Oscar P. Manley. Some physical considerations attendant to the approximate inertial manifolds for Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 1996, 2 (4) : 585-593. doi: 10.3934/dcds.1996.2.585

[15]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[16]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[17]

Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Boundary stabilization of the Navier-Stokes equations with feedback controller via a Galerkin method. Evolution Equations & Control Theory, 2014, 3 (1) : 147-166. doi: 10.3934/eect.2014.3.147

[18]

Juan Wen, Yaling He, Yinnian He, Kun Wang. Stabilized finite element methods based on multiscale enrichment for Allen-Cahn and Cahn-Hilliard equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021074

[19]

Oleg Imanuvilov. On the asymptotic properties for stationary solutions to the Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2301-2340. doi: 10.3934/dcds.2020366

[20]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (85)
  • HTML views (74)
  • Cited by (0)

Other articles
by authors

[Back to Top]