\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic $ H^2$ regularity of a stochastic reaction-diffusion equation

  • * Corresponding author

    * Corresponding author
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper we study the asymptotic dynamics for the weak solutions of the following stochastic reaction-diffusion equation defined on a bounded smooth domain $ {\mathcal{O}} \subset {\mathbb{R}}^N $, $ N \leqslant 3 $, with Dirichlet boundary condition:

    $ \begin{equation} \nonumber\begin{aligned} { {{\rm{d}}} u } +(-\Delta u + u ^3- \beta u ) {{\rm{d}}} t = g(x) {{\rm{d}}} t+h(x) {{\rm{d}}} W , \quad u|_{t = 0} = u_0\in H: = L^2( {\mathcal{O}}), \end{aligned} \end{equation} $

    where $ \beta>0 $, $ g\in H $, and $ W $ a scalar and two-sided Wiener process with a regular perturbation intensity $ h $. We first construct an $ H^2 $ tempered random absorbing set of the system, and then prove an $ (H,H^2) $-smoothing property and conclude that the random attractor of the system is in fact a finite-dimensional tempered random set in $ H^2 $ and pullback attracts tempered random sets in $ H $ under the topology of $ H^2 $. The main technique we shall employ is comparing the regularity of the stochastic equation to that of the corresponding deterministic equation for which the asymptotic $ H^2 $ regularity is already known.

    Mathematics Subject Classification: Primary: 35B40; Secondary: 35B41, 37L30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] L. ArnoldRandom Dynamical Systems, Springer-Verlag, Berlin, 1998.  doi: 10.1007/978-3-662-12878-7.
    [2] P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction–diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.
    [3] T. CaraballoH. CrauelJ. A. Langa and J. C. Robinson, The effect of noise on the Chafee-Infante equation: A nonlinear case study, Proc. Amer. Math. Soc., 135 (2007), 373-382.  doi: 10.1090/S0002-9939-06-08593-5.
    [4] H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.
    [5] H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.
    [6] H. Cui, A. C. Cunha and J. A. Langa, Finite-dimensionality of tempered random uniform attractors, Journal of Nonlinear Science, in press.
    [7] H. CuiJ. A. Langa and Y. Li, Regularity and structure of pullback attractors for reaction-diffusion type systems without uniqueness, Nonlinear Anal., 140 (2016), 208-235.  doi: 10.1016/j.na.2016.03.012.
    [8] H. CuiJ. A. Langa and Y. Li, Measurability of random attractors for quasi strong-to-weak continuous random dynamical systems, J. Dynam. Differential Equations, 30 (2018), 1873-1898.  doi: 10.1007/s10884-017-9617-z.
    [9] H. CuiY. Li and J. Yin, Long time behavior of stochastic MHD equations perturbed by multiplicative noises, J. Appl. Anal. Comput., 6 (2016), 1081-1104.  doi: 10.11948/2016071.
    [10] H. CuiY. Li and J. Yin, Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Anal., 128 (2015), 303-324.  doi: 10.1016/j.na.2015.08.009.
    [11] A. Debussche, On the finite dimensionality of random attractors, Stochastic Anal. Appl., 15 (1997), 473-491.  doi: 10.1080/07362999708809490.
    [12] J. A. Langa and J. C. Robinson, Fractal dimension of a random invariant set, J. Math. Pures Appl., 85 (2006), 269-294.  doi: 10.1016/j.matpur.2005.08.001.
    [13] Y. LiA. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differential Equations, 258 (2015), 504-534.  doi: 10.1016/j.jde.2014.09.021.
    [14] J. Mallet-Paret, Negatively invariant sets of compact maps and an extension of a theorem of Cartwright, J. Differential Equations, 22 (1976), 331-348.  doi: 10.1016/0022-0396(76)90032-2.
    [15] R. Mañé, On the Dimension of the Compact Invariant Sets of Certain Non-Linear Maps, in Dynamical Systems and Turbulence, Warwick 1980, D. Rand and L. -S. Young, eds., Berlin, Heidelberg, 1981, Springer Berlin Heidelberg, pp. 230–242.
    [16] J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, vol. 28, Cambridge University Press, 2001.
    [17] J. C. RobinsonDimensions, Embeddings, and Attractors, Cambridge University Press, 2011. 
    [18] A. Shirikyan and S. Zelik, Exponential attractors for random dynamical systems and applications, Stoch. Partial Differ. Equ. Anal. Comput., 1 (2013), 241-281.  doi: 10.1007/s40072-013-0007-1.
    [19] C. Sun, Asymptotic regularity for some dissipative equations, J. Differential Equations, 248 (2010), 342-362.  doi: 10.1016/j.jde.2009.08.007.
    [20] W. Zhao, Random dynamics of stochastic $p$-Laplacian equations on $\mathbb{R}^N$ with an unbounded additive noise, J. Math. Anal. Appl., 455 (2017), 1178-1203.  doi: 10.1016/j.jmaa.2017.06.025.
    [21] C.-K. ZhongM.-H. Yang and C.-Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223 (2006), 367-399.  doi: 10.1016/j.jde.2005.06.008.
    [22] S. ZhouY. Tian and Z. Wang, Fractal dimension of random attractors for stochastic non-autonomous reaction-diffusion equations, Appl. Math. Comput., 276 (2016), 80-95.  doi: 10.1016/j.amc.2015.12.009.
  • 加载中
SHARE

Article Metrics

HTML views(358) PDF downloads(360) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return