In this paper, the existence and uniquenesss, stability analysis for stochastic delay differential equations with Markovian switching driven by L$ \acute{e} $vy noise are studied. The existence and uniqueness of such equations is simply shown by using the Picard iterative methodology. By using the generalized integral, the Lyapunov-Krasovskii function and the theory of stochastic analysis, the exponential stability in $ p $th($ p\geq2 $) for stochastic delay differential equations with Markovian switching driven by L$ \acute{e} $vy noise is firstly investigated. The almost surely exponential stability is also applied. Finally, an example is provided to verify our results derived.
Citation: |
[1] |
B. Berrhazi, M. E. Fatini, A. Hilbert, N. Mrhardy and R. Petterson, Reflected backward doubly stochastic differential equations with discontinuous barrier, Stochastics, 92 (2020), 1100-1124.
doi: 10.1080/17442508.2019.1691207.![]() ![]() ![]() |
[2] |
F. Bozkurt, Nonlinear stochastic differential equations containing generalized delta processes, Monatshefte F$\ddot{u}$r Mathematik, 168 (2012), 75–112.
doi: 10.1007/s00605-011-0356-7.![]() ![]() ![]() |
[3] |
H. Chen, P. Shi and C. C. Lim, Stability analysis for neutral stochastic delay systems with Markovian switching, Systems Control Lett., 110 (2017), 38-48.
doi: 10.1016/j.sysconle.2017.10.008.![]() ![]() ![]() |
[4] |
S. N. Deng, W. Y. Fei, W. Liu and X. Mao, The truncated EM method for stochastic differential equations with Poisson jumps, J. Comput. Appl. Math., 355 (2019), 232-257.
doi: 10.1016/j.cam.2019.01.020.![]() ![]() ![]() |
[5] |
S. Gao, J. Hu, T. Li and C. G. Yuan, Strong convergence rate of truncated Euler-Maruyama method for stochastic differential delay equations with Poisson jumps, Front. Math. China, 16 (2021), 395-423.
doi: 10.1007/s11464-021-0914-9.![]() ![]() ![]() |
[6] |
T. E. Govindan, Yosida Approximations of Stochastic Differential Equations in Infinite Dimensions and Applications, Probability Theory and Stochastic Modelling, 79. Springer, Cham, 2016.
doi: 10.1007/978-3-319-45684-3.![]() ![]() ![]() |
[7] |
N. Halidias, Construction of positivity preserving numerical schemes for some multidimensional stochastic differential equations, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 153-160.
doi: 10.3934/dcdsb.2015.20.153.![]() ![]() ![]() |
[8] |
S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6 (1993), 327-343.
doi: 10.1093/rfs/6.2.327.![]() ![]() ![]() |
[9] |
D. J. Higham, X. Mao and L. Szpruch, Convergence, non-negativity and stability of a new Milstein scheme with applications to finance, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2083-2100.
doi: 10.3934/dcdsb.2013.18.2083.![]() ![]() ![]() |
[10] |
J. Hull and A. White, The pricing of options on asset with stochastic volitilities, Journal of Finance, 42 (1987), 281-300.
doi: 10.1111/j.1540-6261.1987.tb02568.x.![]() ![]() |
[11] |
F. Jiang, Y. Shen and L. Liu, Taylor approximation of the solutions of stochastic differential delay equations with Poisson jump, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 798-804.
doi: 10.1016/j.cnsns.2010.04.032.![]() ![]() ![]() |
[12] |
O. I. Klesov, I. I. Sirenka and O. A. Tymoshenko, Strong law of large numbers for solutions of non-autonomous stochastic differential equations, Physics and Mathematics, 4 (2017), 61-65.
doi: 10.20535/1810-0546.2017.4.106506.![]() ![]() |
[13] |
R. Kruse and Y. Wu, A randomized Milstein method for stochastic differential equations with non-differentiable drift coefficients, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 3475-3502.
doi: 10.3934/dcdsb.2018253.![]() ![]() ![]() |
[14] |
B. Li, D. S. Li and D. Y. Xu, Stability analysis for impulsive stochastic delay differential equations with Markovian switching, J. Franklin Inst., 350 (2013), 1848-1864.
doi: 10.1016/j.jfranklin.2013.05.009.![]() ![]() ![]() |
[15] |
G. J. Li and Q. G. Yang, Stability analysis between the hybrid stochastic delay differental equations with jumps and the Euler-Maruyama method, J. Appl. Anal. Comput., 11 (2021), 1259-1272.
doi: 10.11948/20200127.![]() ![]() ![]() |
[16] |
H. Li, G. Yin and J. Ye, Asymptotic stability of switching diffusions having sub-exponential rates of decay, Dynam. Systems Appl., 22 (2013), 65-94.
![]() ![]() |
[17] |
M. L. Li and F. Q. Deng, Almost sure stability with general decay rate of neutral stochastic delayed hybrid systems with L$\acute{e}$vy noise, Nonlinear Anal. Hybrid Syst., 24 (2017), 171-185.
doi: 10.1016/j.nahs.2017.01.001.![]() ![]() ![]() |
[18] |
X. Liu and Z. X. Liu, Poisson stable solutions for stochastic differential equations with L$\acute{e}$vy noise, Acta Mathematica Sinica, 21 (2021), 1-33.
doi: 10.1007/s10114-021-0107-1.![]() ![]() |
[19] |
Z. Liu and J. Peng, P-moment stability of stochastic nonlinear delay systems with impulsive jump and Markovian switching, Stoch. Anal. Appl., 27 (2009), 911-923.
doi: 10.1080/07362990903136439.![]() ![]() ![]() |
[20] |
O. Maja, Implicit numerical methods for neutral stochastic differential equations with unbounded delay and Markovian switching, Applied Mathematics and Computation, 347 (2019), 664-687.
doi: 10.1016/j.amc.2018.11.037.![]() ![]() |
[21] |
X. Mao and A. Shah, Exponential stability of stochastic differential delay equations, Stochastics Stochastic Rep., 60 (1997), 135-153.
doi: 10.1080/17442509708834102.![]() ![]() ![]() |
[22] |
F. Mazenc and M. Malisoff, Extensions of Razumikhin's theorem and Lyapunov-Krasovskii functional constructions for time-varying systems with delay, Automatica, 78 (2017), 1-13.
doi: 10.1016/j.automatica.2016.12.005.![]() ![]() ![]() |
[23] |
S. T. Rong, Theory of Stochastic Differential Equations with Jumps and Applications, Mathematical and Analytical Techniques with Applications to Engineering, Springer, New York, 2005.
doi: 10.1007/B106901.![]() ![]() ![]() |
[24] |
L. J. Shen and J. T. Sun, P-th moment exponential stability of stochastic differential equations with impulse effect, Sci. China Inf. Sci., 54 (2011), 1702-1711.
doi: 10.1007/s11432-011-4250-7.![]() ![]() ![]() |
[25] |
Y. Shen, Q. X. Meng and P. Shi, Maximum principle for mean-field jump-diffusion stochastic delay differential equations and its application to finance, Automatica, 50 (2014), 1565-1579.
doi: 10.1016/j.automatica.2014.03.021.![]() ![]() ![]() |
[26] |
N. E. Tatar, Fractional Halanay inequality and application in neural network theory, Acta Math. Sci., 39 (2019), 1605-1618.
doi: 10.1007/s10473-019-0611-x.![]() ![]() ![]() |
[27] |
S. Torkamani, E. Samiei, O. Bobrenkov and E. A. Butcher, Numerical stability analysis of linear stochastic delay differential equations using Chebyshev spectral continuous time approximation, International Journal of Dynamics and Control, 2 (2014), 210-220.
doi: 10.1007/s40435-014-0082-9.![]() ![]() |
[28] |
J. Xiong, S. Q. Zhang and Y. Zhuang, A partially observed non-zero sum differential game of forward-backward stochastic differential equations and its application in finance, Math. Control Relat. Fields, 9 (2019), 257-276.
doi: 10.3934/mcrf.2019013.![]() ![]() ![]() |
[29] |
Z. H. Yu, The improved stability analysis of the backward Euler method for neutral stochastic delay differential equations, Int. J. Comput. Math., 90 (2013), 1489-1494.
doi: 10.1080/00207160.2012.756479.![]() ![]() ![]() |
[30] |
C. Yuan and X. Mao, Stability of stochastic delay hybrid systems with jumps, Eur. J. Control, 16 (2010), 595-608.
doi: 10.3166/ejc.16.595-608.![]() ![]() ![]() |
[31] |
D. Yue and Q. L. Han, Delay-dependent exponential stability of stochastic systems with time-varying delay, nonlinearity, and Markovian switching, IEEE Trans. Automat. Control, 50 (2005), 217-222.
doi: 10.1109/TAC.2004.841935.![]() ![]() ![]() |
[32] |
W. Zhang, J. Ye and H. B. Li, Stability with general decay rates of stochastic differential delay equations with Poisson jumps and Markovian switching, Statist. Probab. Lett., 92 (2014), 1-11.
doi: 10.1016/j.spl.2014.04.024.![]() ![]() ![]() |
[33] |
T. Zhang and H. Chen, The stability with a general decay of stochastic delay differential equations with Markovian switching, Appl. Math. Comput., 359 (2019), 294-307.
doi: 10.1016/j.amc.2019.04.057.![]() ![]() ![]() |
[34] |
Q. X. Zhu, F. Jiang, H. Wang and B. Wang, Comment on "stability analysis of stochastic differential equations with Markovian switching", Systems Control Lett., 102 (2017), 102-103.
doi: 10.1016/j.sysconle.2017.02.004.![]() ![]() ![]() |