[1]
|
J. M. Bové, Huanglongbing: Adestructive, newly-emerging, century-old disease of citrus, J. Plant Pathol., 88 (2006), 7-37.
|
[2]
|
L. Cai, X. Li, B. Fang and S. Ruan, Global properties of vector-host disease models with time delays, J. Math. Biol., 74 (2017), 1397-1423.
doi: 10.1007/s00285-016-1047-8.
|
[3]
|
C. Chiyaka, B. H. Singer, S. E. Halbert, J. G. Morris and A. H. C. van Bruggen, Modeling huanglongbing transmission within a citrus tree, PNAS, 109 (2012), 12213-12218.
doi: 10.1073/pnas.1208326109.
|
[4]
|
K.-R. Chung and R. H. Brlansky, Citrus diseases exotic to Florida: Huanglongbing (citrus greening), Institute of Food and Agricultural Sciences, 7 (2005), 210.
doi: 10.32473/edis-pp133-2005.
|
[5]
|
H. I. Freedman and J. Wu, Periodic solutions of single-spaces models with periodic delay, SIAM J. Math. Anal., 23 (1992), 689-701.
doi: 10.1137/0523035.
|
[6]
|
S. Gao, D. Yu, X. Meng and F. Zhang, Global dynamics of a stage-structured Huanglongbing model with time delay, Chaos Solitons Fractals, 117 (2018), 60-67.
doi: 10.1016/j.chaos.2018.10.008.
|
[7]
|
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7.
|
[8]
|
D. G. Hall and M. G. Hentz, Seasonal flight activity by the Asian citrus psyllid in east central Florida, Entomologia et Applicata., 139 (2011), 75-85.
doi: 10.1111/j.1570-7458.2011.01108.x.
|
[9]
|
K. Jacobsen, J. Stupiansky and S. S. Pilyugin, Mathematical modelling of citrus groves infected by huanglongbing, Math. Bioscien. Engine., 10 (2013), 705-728.
doi: 10.3934/mbe.2013.10.705.
|
[10]
|
J. A. Lee, S. E. Halbert, W. O. Dawson, C. J. Robertson, J. E. Keesling and B. H. Singer, Asymptomatic spread of huanglongbing and implications for disease control, PNAS, 112 (2015), 7605-7610.
doi: 10.1073/pnas.1508253112.
|
[11]
|
F. Li, J. Liu and X.-Q. Zhao, A West Nile virus model with vertical transmission and periodic time delays, J. Nonlinear Sci., 30 (2020), 449-486.
doi: 10.1007/s00332-019-09579-8.
|
[12]
|
X. Liang, L. Zhang and X.-Q. Zhao, The principal eigenvalue for periodic nonlocal dispersal systems with time delay, J. Dynam. Diff. Eqns., 266 (2019), 2100-2124.
doi: 10.1016/j.jde.2018.08.022.
|
[13]
|
Y. Liu and J. H. Tsal, Effects of temperature on biology and life table parameters of the Asian citrus psyllid, Diaphorina citri Kuwayama (Homoptera: Psyllidae), Ann. appl. Biol., 137 (2000), 201-206.
doi: 10.1111/j.1744-7348.2000.tb00060.x.
|
[14]
|
Y. Lou and X.-Q. Zhao, A theoretical approach to understanding population dynamics with seasonal developmental durations, J. Nonlinear Sci., 27 (2017), 573-603.
doi: 10.1007/s00332-016-9344-3.
|
[15]
|
S. A. Lopes, F. Luiz, E. C. Martins, C. G. Fassini, M. C. Sousa, J. C. Barbosa and A. Beattie, Candidatus liberibacter asiaticus' titers in citrus and acquisition rates by diaphorina citri are decreased by higher temperature, Plant Disease, 97 (2013), 1563-1570.
doi: 10.1094/PDIS-11-12-1031-RE.
|
[16]
|
Q. Lu, B. Yan and D. Zhao, Temporal and spatial variation characteristics of climate in Jiangxi Province from 1961 to 2016, Research of soil and water conservation, 26 (2019), 166-173.
|
[17]
|
L. Luo, S. Gao, Y. Ge and Y. Luo, Transmission dynamics of a Huanglongbing model with cross protection, Adv. Difference Equ., 355 (2017), 1-21.
doi: 10.1186/s13662-017-1392-y.
|
[18]
|
P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275.
doi: 10.1137/S0036141003439173.
|
[19]
|
S. Munir, Y. Li, P. He, P. He, P. He, W. Cui, Y. Wu, X. Li and Y. He, Seasonal variation and detection frequency of Candidatus Liberibacter asiaticus in Binchuan, Yunnan province China, Physiological and Molecular Plant Pathology, 106 (2019), 137-144.
doi: 10.1016/j.pmpp.2019.01.004.
|
[20]
|
T. Nakatat, Temperature-dependent development of the citrus psyllid, Diaphorina citri (Homoptera: Psylloidea), and the predicted limit of its spread based on overwintering in the nymphal stage in temperate regions of Japan, Appl. Entomol. Zool., 41 (2006), 383-387.
|
[21]
|
R. Omori and B. Adams, Disrupting seasonality to control disease outbreaks: The case of koi herpes virus, J. Theoret. Biol., 271 (2011), 159-165.
doi: 10.1016/j.jtbi.2010.12.004.
|
[22]
|
M. Parry, G. J. Gibson, S. Parnell, T. R. Gottwald, M. S. Irey, T. C. Gast and C. A. Gilligan, Bayesian inference for an emerging arboreal epidemic in the presence of control, PNAS, 111 (2014), 6258-6262.
doi: 10.1073/pnas.1310997111.
|
[23]
|
M. Qasim, Y. Lin, C. K. Dash, B. S. Bamisile, K. Ravindran, S. U. Islam, H. Ali, F. Wang and L. Wang, Temperature-dependent development of Asian citrus psyllid on various hosts, and mortality by two strains of Isaria, Microbial Pathogenesis, 119 (2018), 109-118.
doi: 10.1016/j.micpath.2018.04.019.
|
[24]
|
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41. American Mathematical Society, Providence, RI, 1995.
|
[25]
|
R. A. Taylor, E. A. Mordecai, C. A. Gilligan, J. R. Rohr and L. R. Johnson, Mathematical models are a powerful method to understand and control the spread of Huanglongbing, PeerJ, 4 (2016), 2315-2319.
doi: 10.7717/peerj.2642.
|
[26]
|
R. G. d'A. Vilamiu, S. Ternes, G. A. Braga and F. F. Laranjeira, A model for Huanglongbing spread between citrus plants including delay times and human intervention, AIP Conf. Proc., 1479 (2012), 2315-2319.
doi: 10.1063/1.4756657.
|
[27]
|
F. Wang, R. Wu and X.-Q. Zhao, A West Nile virus transmission model with periodic incubation periods, SIAM J. Appl. Dyn. Syst., 18 (2019), 1498-1535.
doi: 10.1137/18M1236162.
|
[28]
|
X. Wang and X.-Q. Zhao, A malaria transmission model with temperature-dependent incubation period, Bull. Math. Biol., 79 (2017), 1155-1182.
doi: 10.1007/s11538-017-0276-3.
|
[29]
|
J. Wang, S. Gao, Y. Luo and D. Xie, Threshold dynamics of a huanglongbing model with logistic growth in periodic environments, Abstr. Appl. Anal., 2014 (2014), 1-10.
doi: 10.1155/2014/841367.
|
[30]
|
X. Wu, F. M. G. Magpantay, J. Wu and X. Zou, Stage-structured population systems with temporally periodic delay, Math. Methods Appl. Sci., 38 (2015), 3464-3481.
doi: 10.1002/mma.3424.
|
[31]
|
D. Xu and X.-Q. Zhao, Dynamics in a periodic competitive model with stage structure, J. Math. Anal. Appl., 311 (2005), 417-438.
doi: 10.1016/j.jmaa.2005.02.062.
|
[32]
|
X.-Q. Zhao, Dynamical Systems in Population Biology, 2$^{nd}$ edition, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, Cham, 2017.
doi: 10.1007/978-3-319-56433-3.
|
[33]
|
X.-Q. Zhao, Basic reproduction ratios for periodic compartmental models with time delay, J. Dynam. Diff. Eqns., 29 (2017), 67-82.
doi: 10.1007/s10884-015-9425-2.
|