This paper is concerned with the nonexistence of global solutions to the fractional Schrödinger equations with order $ \alpha $ and nongauge power type nonlinearity $ |u|^p $ for any space dimensions, where $ \alpha\in (0, 2] $ is assumed to be any fractional numbers. A modified test function is employed to overcome some difficulties caused by the fractional operator and to establish blowup results. Some restrictions with respect to $ \alpha, p $ and initial data in the previous literature are removed.
Citation: |
[1] |
J. Bellazzini, V. Georgiev and N. Visciglia, Long time dynamics for semi-relativistic NLS and half wave in arbitrary dimension, Math. Ann., 371 (2018), 707-740.
doi: 10.1007/s00208-018-1666-z.![]() ![]() ![]() |
[2] |
J. P. Borgna and D. F. Rial, Existence of ground states for a one-dimensional relativistic Schrödinger equation, J. Math. Phys., 53 (2012), 062301.
doi: 10.1063/1.4726198.![]() ![]() ![]() |
[3] |
T. Boulenger, D. Himmelsbach and E. Lenzmann, An Blowup for Fractional NLS, J. Funct. Anal., 271 (2016), 2569-2603.
doi: 10.1016/j.jfa.2016.08.011.![]() ![]() ![]() |
[4] |
Y. Cho and T. Ozawa, On the semirelativistic Hartree-type equation, SIAM J. Math. Anal., 38 (2006), 1060-1074.
doi: 10.1137/060653688.![]() ![]() ![]() |
[5] |
M. D'Abbicco and M. Reissig, Semilinear structural damped waves, Math. Meth. Appl. Sci., 37 (2014), 1570-1592.
doi: 10.1002/mma.2913.![]() ![]() ![]() |
[6] |
T. A. Dao and M. Reissig, A Blow-up result for semi-linear structurally damped $\sigma$-evolution equations, Anomalies in Partial Differential Equations, 43 (2021), 213-245.
![]() ![]() |
[7] |
H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \triangle u+ u^{ 1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. Ⅰ, 13 (1966), 109-124.
![]() ![]() |
[8] |
K. Fujiwara, A note for the global non-existence of semirelativistic equations with non-gauge invariant power type nonlinearity., Math. Method. Appl. Sci., 41 (2018), 4955-4966.
doi: 10.1002/mma.4944.![]() ![]() ![]() |
[9] |
K. Fujiwara, S. Machihara and T. Ozawa, Remark on a semirelativistic equation in the energy space, Discrete Contin. Dyn. Syst., Dynamical systems, differential equations and applications. 10th AIMS Conference. Suppl., 2015 (2015), 473–478.
doi: 10.3934/proc.2015.0473.![]() ![]() ![]() |
[10] |
K. Fujiwara, S. Machihara and T. Ozawa, Well-posedness for the Cauchy problem of a system of semirelativistic equations, Comm. Math. Phys., 338 (2015), 367-391.
doi: 10.1007/s00220-015-2347-3.![]() ![]() ![]() |
[11] |
K. Fujiwara and T. Ozawa, Remarks on global solutions to the Cauchy problem for semirel- ativistic equations with power type nonlinearrity, International Journal of Mathematical Analysis, 9 (2015), 2599-2610.
![]() |
[12] |
K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Japan Acad., 49 (1973), 503-505.
![]() ![]() |
[13] |
T. Hmidi and S. Keraani, Blowup theory for the critical nonlinear Schrödinger equations revisited, Int. Math. Res. Not., 46 (2005), 2815-2828.
doi: 10.1155/IMRN.2005.2815.![]() ![]() ![]() |
[14] |
M. Ikeda and T. Inui, Some non-existence results for the semilinear Schrödinger equation without gauge invariance, J. Math. Anal. Appl., 425 (2015), 758-773.
doi: 10.1016/j.jmaa.2015.01.003.![]() ![]() ![]() |
[15] |
M. Ikeda and T. Inui, Small data blow up of $L^2$ or $H^1$-solution for the semilinear Schrödinger equation without gauge invariance, J. Evol. Equ., 15 (2015), 571-581.
doi: 10.1007/s00028-015-0273-7.![]() ![]() ![]() |
[16] |
M. Ikeda and Y. Wakasugi, Small data blow-up of $L^2$-solution for the nonlinear Schrödinger equation without gauge invariance, Differential Integral Equations, 26 (2013), 1275-1285.
![]() ![]() |
[17] |
T. Inui, Some nonexistence results for a semirelativistic Schrödinger equation with nongauge power type nonlinearity, Proc. Amer. Math. Soc., 144 (2016), 2901-2909.
doi: 10.1090/proc/12938.![]() ![]() ![]() |
[18] |
S. Klainerman and S. Selberg, Bilinear estimates and applications to nonlinear wave equations, Comm. Contemp. Math., 4 (2002), 223-295.
doi: 10.1142/S0219199702000634.![]() ![]() ![]() |
[19] |
J. Krieger, E. Lenzmann and P. Raphael, Nondispersive solutions to the $L^2$-critical half-wave equation, Arch. Ration. Mech. Anal., 209 (2013), 61-129.
doi: 10.1007/s00205-013-0620-1.![]() ![]() ![]() |
[20] |
M. Kwaśnicki, Ten equivalent definitions of the fractional laplace operator, Fract. Calc. Appl. Anal., 20 (2017), 7-51.
doi: 10.1515/fca-2017-0002.![]() ![]() ![]() |
[21] |
N.-A. Lai and Y. Zhou, The sharp lifespan estimate for semilinear damped wave equation with Fujita critical power in high dimensions, J. Math. Pures Appl., 123 (2019), 229-243.
doi: 10.1016/j.matpur.2018.04.009.![]() ![]() ![]() |
[22] |
T.-Y. Lee and W.-M. Ni, Global existence, large time behavior and life span of solutions of a semilinear parabolic Cauchy problem, Trans. Amer. Math. Soc., 333 (1992), 365-378.
doi: 10.1090/S0002-9947-1992-1057781-6.![]() ![]() ![]() |
[23] |
C. Peng and Q. Shi, Stability of standing wave for the fractional nonlinear Schrödinger equation, J. Math. Phys., 59 (2018), 011508.
doi: 10.1063/1.5021689.![]() ![]() ![]() |
[24] |
T. Saanouni, Remark on the inhomogeneous fractional nonlinear Schrödinger equations, J. Math. Phys., 57 (2016), 081503.
doi: 10.1063/1.4960045.![]() ![]() ![]() |
[25] |
S. Sugitani, On nonexistence of global solutions for some nonlinear integral equations, Osaka J. Math., 12 (1975), 45-51.
![]() ![]() |