October  2022, 27(10): 6063-6081. doi: 10.3934/dcdsb.2021307

On weak (measure-valued)-strong uniqueness for compressible MHD system with non-monotone pressure law

School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China

* Corresponding author: Ting Zhang

Received  June 2021 Revised  November 2021 Published  October 2022 Early access  January 2022

In this paper, we define a renormalized dissipative measure-valued (rDMV) solution of the compressible magnetohydrodynamics (MHD) equations with non-monotone pressure law. We prove the existence of the rDMV solutions and establish a suitable relative energy inequality. And we obtain the weak (measure-valued)-strong uniqueness property of this rDMV solution with the help of the relative energy inequality.

Citation: Yu Liu, Ting Zhang. On weak (measure-valued)-strong uniqueness for compressible MHD system with non-monotone pressure law. Discrete and Continuous Dynamical Systems - B, 2022, 27 (10) : 6063-6081. doi: 10.3934/dcdsb.2021307
References:
[1]

D. Bresch and P.-E. Jabin, Global existence of weak solutions for compressible Navier-Stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor, Ann. of Math., 188 (2018), 577-684.  doi: 10.4007/annals.2018.188.2.4.

[2]

J. BřezinaE. Feireisl and A. Novotný, Stability of strong solutions to the Navier-Stokes-Fourier system, SIAM J. Math. Anal., 52 (2020), 1761-1785.  doi: 10.1137/18M1223022.

[3]

H. Cabannes, Theoretical Magnetofluiddynamics, Academic Press, 1970.

[4]

T. ChangB. J. Jin and A. Novotný, Compressible Navier-Stokes system with general inflow-out flow boundary data, SIAM J. Math. Anal., 51 (2019), 1238-1278.  doi: 10.1137/17M115089X.

[5]

N. Chaudhuri, On weak-strong uniqueness for compressible Navier-Stokes system with general pressure laws, Nonlinear Anal. Real World Appl., 49 (2019), 250-267.  doi: 10.1016/j.nonrwa.2019.03.004.

[6]

N. Chaudhuri, On weak (measure-valued)-strong uniqueness for compressible Navier-Stokes system with non-monotone pressure law, J. Math. Fluid Mech., 22 (2020), Paper No. 17, 13 pp. doi: 10.1007/s00021-019-0465-y.

[7]

G.-Q. Chen and D. Wang, Global solutions of nonlinear magnetohydrodynamics with large initial data, J. Differential Equations, 182 (2002), 344-376.  doi: 10.1006/jdeq.2001.4111.

[8]

G.-Q. Chen and D. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamic equations, Z. Angew. Math. Phys., 54 (2003), 608-632.  doi: 10.1007/s00033-003-1017-z.

[9]

R. J. Diperna, Measure-valued solutions to conservation laws, Arch. Ration. Mech. Anal., 88 (1985), 223-270.  doi: 10.1007/BF00752112.

[10]

B. Ducomet and E. Feireisl, The equations of magnetohydrodynamics: on the interaction between matter and radiation in the evolution of gaseous stars, Comm. Math. Phys., 266 (2006), 595-629.  doi: 10.1007/s00220-006-0052-y.

[11]

J. FanS. Jiang and G. Nakamura, Vanishing shear viscosity limit in the magnetohydrodynamic equations, Comm. Math. Phys., 270 (2007), 691-708.  doi: 10.1007/s00220-006-0167-1.

[12]

D. Fang and T. Zhang, Compressible Navier-Stokes equations with vacuum state in the case of general pressure law, Math. Methods Appl. Sci., 29 (2006), 1081-1106.  doi: 10.1002/mma.708.

[13]

E. Feireisl, On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable, Comment. Math. Univ. Carolin., 42 (2001), 83-98. 

[14]

E. Feireisl, Compressible Navier-Stokes equations with a non-monotone pressure law, J. Differential Equations, 184 (2002), 97-108.  doi: 10.1006/jdeq.2001.4137.

[15]

E. Feireisl, On weak-strong uniqueness for the compressible Navier-Stokes system with non-monotone pressure law, Comm. Partial Differential Equations, 44 (2019), 271-278.  doi: 10.1080/03605302.2018.1543319.

[16]

E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda and E. Wiedemann, Dissipative measure-valued solutions to the compressible Navier-Stokes system, Calc. Var. Partial Differential Equations, 55 (2016), Art. 141, 20 pp. doi: 10.1007/s00526-016-1089-1.

[17]

E. FeireislB. J. Jin and A. Novotný, Relative entropies, suitable weak solutions and weak-strong uniqueness for the compressible Navier-Stokes system, J. Math. Fluid Mech., 14 (2012), 717-730.  doi: 10.1007/s00021-011-0091-9.

[18]

E. FeireislA. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.  doi: 10.1007/PL00000976.

[19]

P. G. Fernández-Dalgo and O. Jarrín, Weak-strong uniqueness in weighted $L^2$ spaces and weak suitable solutions in local Morrey spaces for the MHD equations, J. Differential Equations, 271 (2021), 864-915.  doi: 10.1016/j.jde.2020.09.017.

[20]

H. Freistühler and P. Szmolyan, Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves, SIAM J. Math. Anal., 26 (1995), 112-128.  doi: 10.1137/S0036141093247366.

[21]

P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech., 13 (2011), 137-146.  doi: 10.1007/s00021-009-0006-1.

[22]

P. GwiazdaA. Świerczewska-Gwiazda and E. Wiedemann, Weak-strong uniqueness for measure-valued solutions of some compressible fluid models, Nonlinearity, 28 (2015), 3873-3890.  doi: 10.1088/0951-7715/28/11/3873.

[23]

D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differential Equations, 120 (1995), 215-254.  doi: 10.1006/jdeq.1995.1111.

[24]

D. Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data, Arch. Ration. Mech. Anal., 132 (1995), 1-14.  doi: 10.1007/BF00390346.

[25]

D. Hoff and E. Tsyganov, Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics, Z. Angew. Math. Phys., 56 (2005), 791-804.  doi: 10.1007/s00033-005-4057-8.

[26]

X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203-238.  doi: 10.1007/s00205-010-0295-9.

[27] P.-L. Lions, Mathematical Topics in Fluid Mechanics, vol. 2. Compressible Models, New York: The Clarendon Press; Oxford University Press, 1998. 
[28]

Y. Liu and T. Zhang, Global weak solutions to a 2D compressible non-resistivity MHD system with non-monotone pressure law and nonconstant viscosity, J. Math. Anal. Appl., 502 (2021), Paper No. 125244, 38 pp. doi: 10.1016/j.jmaa.2021.125244.

[29]

J. Neustupa, Measure-valued solutions of the Euler and Navier-Stokes equations for compressible barotropic fluids, Math. Nachr., 163 (1993), 217-227.  doi: 10.1002/mana.19931630119.

[30]

D. Wang, Large solutions to the initial-boundary value problem for planar magnetohydrodynamics, SIAM J. Appl. Math., 63 (2003), 1424-1441.  doi: 10.1137/S0036139902409284.

[31]

W. Yan, On weak-strong uniqueness property for full compressible magnetohydrodynamics flows, Cent. Eur. J. Math., 11 (2013), 2005-2019.  doi: 10.2478/s11533-013-0297-6.

[32]

Y.-F. YangC. Dou and Q. Ju, Weak-strong uniqueness property for the magnetohydrodynamic equations of three-dimensional compressible isentropic flows, Nonlinear Anal., 85 (2013), 23-30.  doi: 10.1016/j.na.2013.02.015.

show all references

References:
[1]

D. Bresch and P.-E. Jabin, Global existence of weak solutions for compressible Navier-Stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor, Ann. of Math., 188 (2018), 577-684.  doi: 10.4007/annals.2018.188.2.4.

[2]

J. BřezinaE. Feireisl and A. Novotný, Stability of strong solutions to the Navier-Stokes-Fourier system, SIAM J. Math. Anal., 52 (2020), 1761-1785.  doi: 10.1137/18M1223022.

[3]

H. Cabannes, Theoretical Magnetofluiddynamics, Academic Press, 1970.

[4]

T. ChangB. J. Jin and A. Novotný, Compressible Navier-Stokes system with general inflow-out flow boundary data, SIAM J. Math. Anal., 51 (2019), 1238-1278.  doi: 10.1137/17M115089X.

[5]

N. Chaudhuri, On weak-strong uniqueness for compressible Navier-Stokes system with general pressure laws, Nonlinear Anal. Real World Appl., 49 (2019), 250-267.  doi: 10.1016/j.nonrwa.2019.03.004.

[6]

N. Chaudhuri, On weak (measure-valued)-strong uniqueness for compressible Navier-Stokes system with non-monotone pressure law, J. Math. Fluid Mech., 22 (2020), Paper No. 17, 13 pp. doi: 10.1007/s00021-019-0465-y.

[7]

G.-Q. Chen and D. Wang, Global solutions of nonlinear magnetohydrodynamics with large initial data, J. Differential Equations, 182 (2002), 344-376.  doi: 10.1006/jdeq.2001.4111.

[8]

G.-Q. Chen and D. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamic equations, Z. Angew. Math. Phys., 54 (2003), 608-632.  doi: 10.1007/s00033-003-1017-z.

[9]

R. J. Diperna, Measure-valued solutions to conservation laws, Arch. Ration. Mech. Anal., 88 (1985), 223-270.  doi: 10.1007/BF00752112.

[10]

B. Ducomet and E. Feireisl, The equations of magnetohydrodynamics: on the interaction between matter and radiation in the evolution of gaseous stars, Comm. Math. Phys., 266 (2006), 595-629.  doi: 10.1007/s00220-006-0052-y.

[11]

J. FanS. Jiang and G. Nakamura, Vanishing shear viscosity limit in the magnetohydrodynamic equations, Comm. Math. Phys., 270 (2007), 691-708.  doi: 10.1007/s00220-006-0167-1.

[12]

D. Fang and T. Zhang, Compressible Navier-Stokes equations with vacuum state in the case of general pressure law, Math. Methods Appl. Sci., 29 (2006), 1081-1106.  doi: 10.1002/mma.708.

[13]

E. Feireisl, On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable, Comment. Math. Univ. Carolin., 42 (2001), 83-98. 

[14]

E. Feireisl, Compressible Navier-Stokes equations with a non-monotone pressure law, J. Differential Equations, 184 (2002), 97-108.  doi: 10.1006/jdeq.2001.4137.

[15]

E. Feireisl, On weak-strong uniqueness for the compressible Navier-Stokes system with non-monotone pressure law, Comm. Partial Differential Equations, 44 (2019), 271-278.  doi: 10.1080/03605302.2018.1543319.

[16]

E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda and E. Wiedemann, Dissipative measure-valued solutions to the compressible Navier-Stokes system, Calc. Var. Partial Differential Equations, 55 (2016), Art. 141, 20 pp. doi: 10.1007/s00526-016-1089-1.

[17]

E. FeireislB. J. Jin and A. Novotný, Relative entropies, suitable weak solutions and weak-strong uniqueness for the compressible Navier-Stokes system, J. Math. Fluid Mech., 14 (2012), 717-730.  doi: 10.1007/s00021-011-0091-9.

[18]

E. FeireislA. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.  doi: 10.1007/PL00000976.

[19]

P. G. Fernández-Dalgo and O. Jarrín, Weak-strong uniqueness in weighted $L^2$ spaces and weak suitable solutions in local Morrey spaces for the MHD equations, J. Differential Equations, 271 (2021), 864-915.  doi: 10.1016/j.jde.2020.09.017.

[20]

H. Freistühler and P. Szmolyan, Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves, SIAM J. Math. Anal., 26 (1995), 112-128.  doi: 10.1137/S0036141093247366.

[21]

P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech., 13 (2011), 137-146.  doi: 10.1007/s00021-009-0006-1.

[22]

P. GwiazdaA. Świerczewska-Gwiazda and E. Wiedemann, Weak-strong uniqueness for measure-valued solutions of some compressible fluid models, Nonlinearity, 28 (2015), 3873-3890.  doi: 10.1088/0951-7715/28/11/3873.

[23]

D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differential Equations, 120 (1995), 215-254.  doi: 10.1006/jdeq.1995.1111.

[24]

D. Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data, Arch. Ration. Mech. Anal., 132 (1995), 1-14.  doi: 10.1007/BF00390346.

[25]

D. Hoff and E. Tsyganov, Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics, Z. Angew. Math. Phys., 56 (2005), 791-804.  doi: 10.1007/s00033-005-4057-8.

[26]

X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203-238.  doi: 10.1007/s00205-010-0295-9.

[27] P.-L. Lions, Mathematical Topics in Fluid Mechanics, vol. 2. Compressible Models, New York: The Clarendon Press; Oxford University Press, 1998. 
[28]

Y. Liu and T. Zhang, Global weak solutions to a 2D compressible non-resistivity MHD system with non-monotone pressure law and nonconstant viscosity, J. Math. Anal. Appl., 502 (2021), Paper No. 125244, 38 pp. doi: 10.1016/j.jmaa.2021.125244.

[29]

J. Neustupa, Measure-valued solutions of the Euler and Navier-Stokes equations for compressible barotropic fluids, Math. Nachr., 163 (1993), 217-227.  doi: 10.1002/mana.19931630119.

[30]

D. Wang, Large solutions to the initial-boundary value problem for planar magnetohydrodynamics, SIAM J. Appl. Math., 63 (2003), 1424-1441.  doi: 10.1137/S0036139902409284.

[31]

W. Yan, On weak-strong uniqueness property for full compressible magnetohydrodynamics flows, Cent. Eur. J. Math., 11 (2013), 2005-2019.  doi: 10.2478/s11533-013-0297-6.

[32]

Y.-F. YangC. Dou and Q. Ju, Weak-strong uniqueness property for the magnetohydrodynamic equations of three-dimensional compressible isentropic flows, Nonlinear Anal., 85 (2013), 23-30.  doi: 10.1016/j.na.2013.02.015.

[1]

Hongjun Gao, Šárka Nečasová, Tong Tang. On weak-strong uniqueness and singular limit for the compressible Primitive Equations. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4287-4305. doi: 10.3934/dcds.2020181

[2]

Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032

[3]

Wenjing Zhao. Weak-strong uniqueness of incompressible magneto-viscoelastic flows. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2907-2917. doi: 10.3934/cpaa.2020127

[4]

Etienne Emmrich, Robert Lasarzik. Weak-strong uniqueness for the general Ericksen—Leslie system in three dimensions. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4617-4635. doi: 10.3934/dcds.2018202

[5]

Cleopatra Christoforou, Myrto Galanopoulou, Athanasios E. Tzavaras. Measure-valued solutions for the equations of polyconvex adiabatic thermoelasticity. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6175-6206. doi: 10.3934/dcds.2019269

[6]

Maria Michaela Porzio, Flavia Smarrazzo, Alberto Tesei. Radon measure-valued solutions of unsteady filtration equations. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022040

[7]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[8]

Xianpeng Hu, Hao Wu. Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3437-3461. doi: 10.3934/dcds.2015.35.3437

[9]

Tomoyuki Suzuki. Regularity criteria in weak spaces in terms of the pressure to the MHD equations. Conference Publications, 2011, 2011 (Special) : 1335-1343. doi: 10.3934/proc.2011.2011.1335

[10]

Sergiu Aizicovici, Simeon Reich. Anti-periodic solutions to a class of non-monotone evolution equations. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 35-42. doi: 10.3934/dcds.1999.5.35

[11]

Yong Zeng. Existence and uniqueness of very weak solution of the MHD type system. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5617-5638. doi: 10.3934/dcds.2020240

[12]

Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029

[13]

Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255

[14]

Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331

[15]

Pablo Amster, Manuel Zamora. Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 4819-4835. doi: 10.3934/dcds.2018211

[16]

Alfonso Castro, Benjamin Preskill. Existence of solutions for a semilinear wave equation with non-monotone nonlinearity. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 649-658. doi: 10.3934/dcds.2010.28.649

[17]

Jun Chen, Wenyu Sun, Zhenghao Yang. A non-monotone retrospective trust-region method for unconstrained optimization. Journal of Industrial and Management Optimization, 2013, 9 (4) : 919-944. doi: 10.3934/jimo.2013.9.919

[18]

José Caicedo, Alfonso Castro, Arturo Sanjuán. Bifurcation at infinity for a semilinear wave equation with non-monotone nonlinearity. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1857-1865. doi: 10.3934/dcds.2017078

[19]

Arturo Hidalgo, Lourdes Tello. On a global climate model with non-monotone multivalued coalbedo. Discrete and Continuous Dynamical Systems - S, 2022, 15 (10) : 2929-2943. doi: 10.3934/dcdss.2022093

[20]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (360)
  • HTML views (178)
  • Cited by (0)

Other articles
by authors

[Back to Top]