In this article we define a notion of metric entropy for an invariant measure associated to a set-valued map $ F $ on a compact metric space $ X $. Besides, we describe its main properties and prove the Half Variational Principle, which relates the metric entropy with the notion of topological entropy given in [
Citation: |
[1] |
R. L. Adler, A. G. Konhein and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319.
doi: 10.1090/S0002-9947-1965-0175106-9.![]() ![]() ![]() |
[2] |
J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Reprint of the 1990 edition edition, Birkhäuser Boston, Inc., Boston, MA, 2009.
doi: 10.1007/978-0-8176-4848-0.![]() ![]() ![]() |
[3] |
J.-P. Aubin, H. Frankowska and A. Lazota, Poincaré's recurrence theorem for set-valued dynamical systems, Ann. Polon. Math., 54 (1991), 85-91.
doi: 10.4064/ap-54-1-85-91.![]() ![]() ![]() |
[4] |
L. Boltzmann, Über die beziehung dem zweiten Haubtsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen uber das Wärmegleichgewicht, Wiener Berichte., 76 (1877), 373-435.
![]() |
[5] |
R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414.
doi: 10.1090/S0002-9947-1971-0274707-X.![]() ![]() ![]() |
[6] |
D. Carrasco-Olivera, R. Metzger Alvan and C. A. Morales Rojas, Topological entropy for set-valued maps, Discrete Contin. Dyn. Syst. Ser. B., 20 (2015), 3461-3474.
doi: 10.3934/dcdsb.2015.20.3461.![]() ![]() ![]() |
[7] |
D. Carrasco-Olivera, R. Metzger and C. A. Morales, Logarithmic expansion, entropy, and dimension for set-valued maps, Optimal Control, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 178 (2020), 31-40.
![]() ![]() |
[8] |
J. Casimiro, Metric entropy and topological Entropy: The Variational Principle, Master thesis in Mathematics and Applications, Tecnico Lisboa, 2014.
![]() |
[9] |
R. Clausius, Über verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie, Annalen der Physik, 125 (1865), 353-400.
doi: 10.1002/andp.18652010702.![]() ![]() |
[10] |
E. I. Dinaburg, On the relations among various entropy characteristics of dynamical systems, Mathematics of the USSR-Izvestiya, 5 (1971), 337-378.
doi: 10.1070/IM1971v005n02ABEH001050.![]() ![]() |
[11] |
T. N. T. Goodman, Relating topological entropy and measure entropy, Bulletin of the London Mathematical Society, 3 (1971), 176-180.
doi: 10.1112/blms/3.2.176.![]() ![]() ![]() |
[12] |
A. Y. Hin$\check{\mathrm{v}}$in, On the basic theorems of information theory, Uspehi Mat. Nauk, 11 (1956), 17-75.
![]() ![]() |
[13] |
J. P. Kelly and T. Tennant, Topological entropy of set-valued functions, Houston J. Math., 43 (2017), 263-282.
![]() ![]() |
[14] |
X. F. Luo, X. X. Nie and J. D. Yin, On the shadowing property and shadowable point of set-valued dynamical systems, Acta Mathematica Sinica, English series, 12 (2020), 1384-1394.
doi: 10.1007/s10114-020-9331-3.![]() ![]() ![]() |
[15] |
B. McMillan, The basic theorems of information theory, Ann. Math. Statistics, 24 (1953), 196-219.
doi: 10.1214/aoms/1177729028.![]() ![]() ![]() |
[16] |
R. Metzger, C. A. Morales Rojas and P. Thieullen, Topological stability in set-valued dynamics, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1965-1975.
doi: 10.3934/dcdsb.2017115.![]() ![]() ![]() |
[17] |
M. J. Pacifico and J. Vieitez, Expansiveness, Lyapunov exponents and entropy for set valued maps, arXiv: 1709.05739v3.
![]() |
[18] |
B. E. Raines and T. Tennant, The specification property on a set-valued map and its inverse limit, Houston J. Math., 44 (2018), 665-677.
![]() ![]() |
[19] |
C. E. Shannon, A mathematical theory of communication, Bell System Tech. J., 27 (1948), 623-656.
doi: 10.1002/j.1538-7305.1948.tb01338.x.![]() ![]() ![]() |
[20] |
J. Sinai, On the concept of entropy for a dynamic system (Russian), Dokl. Akad. Nauk SSSR, 124 (1959), 768-771.
![]() ![]() |
[21] |
M. Viana and K. Oliveira, Foundations of Ergodic Theory, Cambridge Studies in Advanced Mathematics 151, Cambridge University Press, Cambridge, 2016.
doi: 10.1017/CBO9781316422601.![]() ![]() ![]() |
[22] |
J. von Newmann, Mathematische Grundlagen der Quantenmechanik, Unveränderter Nachdruck der ersten Auflage von 1932, Die Grundlehren der mathematischen Wissenschaften, Band 38, Springer-Verlag, Berlin-New York, 1968.
![]() ![]() |