doi: 10.3934/dcdsb.2022010
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Metric entropy for set-valued maps

Departamento de Matemáticas, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta, Chile

*Corresponding author: Kendry J. Vivas

Received  October 2021 Revised  December 2021 Early access January 2022

In this article we define a notion of metric entropy for an invariant measure associated to a set-valued map $ F $ on a compact metric space $ X $. Besides, we describe its main properties and prove the Half Variational Principle, which relates the metric entropy with the notion of topological entropy given in [13] for this class of maps.

Citation: Kendry J. Vivas, Víctor F. Sirvent. Metric entropy for set-valued maps. Discrete and Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2022010
References:
[1]

R. L. AdlerA. G. Konhein and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319.  doi: 10.1090/S0002-9947-1965-0175106-9.

[2]

J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Reprint of the 1990 edition edition, Birkhäuser Boston, Inc., Boston, MA, 2009. doi: 10.1007/978-0-8176-4848-0.

[3]

J.-P. AubinH. Frankowska and A. Lazota, Poincaré's recurrence theorem for set-valued dynamical systems, Ann. Polon. Math., 54 (1991), 85-91.  doi: 10.4064/ap-54-1-85-91.

[4]

L. Boltzmann, Über die beziehung dem zweiten Haubtsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen uber das Wärmegleichgewicht, Wiener Berichte., 76 (1877), 373-435. 

[5]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414.  doi: 10.1090/S0002-9947-1971-0274707-X.

[6]

D. Carrasco-OliveraR. Metzger Alvan and C. A. Morales Rojas, Topological entropy for set-valued maps, Discrete Contin. Dyn. Syst. Ser. B., 20 (2015), 3461-3474.  doi: 10.3934/dcdsb.2015.20.3461.

[7]

D. Carrasco-OliveraR. Metzger and C. A. Morales, Logarithmic expansion, entropy, and dimension for set-valued maps, Optimal Control, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 178 (2020), 31-40. 

[8]

J. Casimiro, Metric entropy and topological Entropy: The Variational Principle, Master thesis in Mathematics and Applications, Tecnico Lisboa, 2014.

[9]

R. Clausius, Über verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie, Annalen der Physik, 125 (1865), 353-400.  doi: 10.1002/andp.18652010702.

[10]

E. I. Dinaburg, On the relations among various entropy characteristics of dynamical systems, Mathematics of the USSR-Izvestiya, 5 (1971), 337-378.  doi: 10.1070/IM1971v005n02ABEH001050.

[11]

T. N. T. Goodman, Relating topological entropy and measure entropy, Bulletin of the London Mathematical Society, 3 (1971), 176-180.  doi: 10.1112/blms/3.2.176.

[12]

A. Y. Hin$\check{\mathrm{v}}$in, On the basic theorems of information theory, Uspehi Mat. Nauk, 11 (1956), 17-75. 

[13]

J. P. Kelly and T. Tennant, Topological entropy of set-valued functions, Houston J. Math., 43 (2017), 263-282. 

[14]

X. F. LuoX. X. Nie and J. D. Yin, On the shadowing property and shadowable point of set-valued dynamical systems, Acta Mathematica Sinica, English series, 12 (2020), 1384-1394.  doi: 10.1007/s10114-020-9331-3.

[15]

B. McMillan, The basic theorems of information theory, Ann. Math. Statistics, 24 (1953), 196-219.  doi: 10.1214/aoms/1177729028.

[16]

R. MetzgerC. A. Morales Rojas and P. Thieullen, Topological stability in set-valued dynamics, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1965-1975.  doi: 10.3934/dcdsb.2017115.

[17]

M. J. Pacifico and J. Vieitez, Expansiveness, Lyapunov exponents and entropy for set valued maps, arXiv: 1709.05739v3.

[18]

B. E. Raines and T. Tennant, The specification property on a set-valued map and its inverse limit, Houston J. Math., 44 (2018), 665-677. 

[19]

C. E. Shannon, A mathematical theory of communication, Bell System Tech. J., 27 (1948), 623-656.  doi: 10.1002/j.1538-7305.1948.tb01338.x.

[20]

J. Sinai, On the concept of entropy for a dynamic system (Russian), Dokl. Akad. Nauk SSSR, 124 (1959), 768-771. 

[21] M. Viana and K. Oliveira, Foundations of Ergodic Theory, Cambridge Studies in Advanced Mathematics 151, Cambridge University Press, Cambridge, 2016.  doi: 10.1017/CBO9781316422601.
[22]

J. von Newmann, Mathematische Grundlagen der Quantenmechanik, Unveränderter Nachdruck der ersten Auflage von 1932, Die Grundlehren der mathematischen Wissenschaften, Band 38, Springer-Verlag, Berlin-New York, 1968.

show all references

References:
[1]

R. L. AdlerA. G. Konhein and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319.  doi: 10.1090/S0002-9947-1965-0175106-9.

[2]

J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Reprint of the 1990 edition edition, Birkhäuser Boston, Inc., Boston, MA, 2009. doi: 10.1007/978-0-8176-4848-0.

[3]

J.-P. AubinH. Frankowska and A. Lazota, Poincaré's recurrence theorem for set-valued dynamical systems, Ann. Polon. Math., 54 (1991), 85-91.  doi: 10.4064/ap-54-1-85-91.

[4]

L. Boltzmann, Über die beziehung dem zweiten Haubtsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen uber das Wärmegleichgewicht, Wiener Berichte., 76 (1877), 373-435. 

[5]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414.  doi: 10.1090/S0002-9947-1971-0274707-X.

[6]

D. Carrasco-OliveraR. Metzger Alvan and C. A. Morales Rojas, Topological entropy for set-valued maps, Discrete Contin. Dyn. Syst. Ser. B., 20 (2015), 3461-3474.  doi: 10.3934/dcdsb.2015.20.3461.

[7]

D. Carrasco-OliveraR. Metzger and C. A. Morales, Logarithmic expansion, entropy, and dimension for set-valued maps, Optimal Control, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 178 (2020), 31-40. 

[8]

J. Casimiro, Metric entropy and topological Entropy: The Variational Principle, Master thesis in Mathematics and Applications, Tecnico Lisboa, 2014.

[9]

R. Clausius, Über verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie, Annalen der Physik, 125 (1865), 353-400.  doi: 10.1002/andp.18652010702.

[10]

E. I. Dinaburg, On the relations among various entropy characteristics of dynamical systems, Mathematics of the USSR-Izvestiya, 5 (1971), 337-378.  doi: 10.1070/IM1971v005n02ABEH001050.

[11]

T. N. T. Goodman, Relating topological entropy and measure entropy, Bulletin of the London Mathematical Society, 3 (1971), 176-180.  doi: 10.1112/blms/3.2.176.

[12]

A. Y. Hin$\check{\mathrm{v}}$in, On the basic theorems of information theory, Uspehi Mat. Nauk, 11 (1956), 17-75. 

[13]

J. P. Kelly and T. Tennant, Topological entropy of set-valued functions, Houston J. Math., 43 (2017), 263-282. 

[14]

X. F. LuoX. X. Nie and J. D. Yin, On the shadowing property and shadowable point of set-valued dynamical systems, Acta Mathematica Sinica, English series, 12 (2020), 1384-1394.  doi: 10.1007/s10114-020-9331-3.

[15]

B. McMillan, The basic theorems of information theory, Ann. Math. Statistics, 24 (1953), 196-219.  doi: 10.1214/aoms/1177729028.

[16]

R. MetzgerC. A. Morales Rojas and P. Thieullen, Topological stability in set-valued dynamics, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1965-1975.  doi: 10.3934/dcdsb.2017115.

[17]

M. J. Pacifico and J. Vieitez, Expansiveness, Lyapunov exponents and entropy for set valued maps, arXiv: 1709.05739v3.

[18]

B. E. Raines and T. Tennant, The specification property on a set-valued map and its inverse limit, Houston J. Math., 44 (2018), 665-677. 

[19]

C. E. Shannon, A mathematical theory of communication, Bell System Tech. J., 27 (1948), 623-656.  doi: 10.1002/j.1538-7305.1948.tb01338.x.

[20]

J. Sinai, On the concept of entropy for a dynamic system (Russian), Dokl. Akad. Nauk SSSR, 124 (1959), 768-771. 

[21] M. Viana and K. Oliveira, Foundations of Ergodic Theory, Cambridge Studies in Advanced Mathematics 151, Cambridge University Press, Cambridge, 2016.  doi: 10.1017/CBO9781316422601.
[22]

J. von Newmann, Mathematische Grundlagen der Quantenmechanik, Unveränderter Nachdruck der ersten Auflage von 1932, Die Grundlehren der mathematischen Wissenschaften, Band 38, Springer-Verlag, Berlin-New York, 1968.

[1]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

[2]

C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial and Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519

[3]

Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115

[4]

Guolin Yu. Topological properties of Henig globally efficient solutions of set-valued problems. Numerical Algebra, Control and Optimization, 2014, 4 (4) : 309-316. doi: 10.3934/naco.2014.4.309

[5]

Shay Kels, Nira Dyn. Bernstein-type approximation of set-valued functions in the symmetric difference metric. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1041-1060. doi: 10.3934/dcds.2014.34.1041

[6]

Jiawei Chen, Zhongping Wan, Liuyang Yuan. Existence of solutions and $\alpha$-well-posedness for a system of constrained set-valued variational inequalities. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 567-581. doi: 10.3934/naco.2013.3.567

[7]

Xing Wang, Nan-Jing Huang. Stability analysis for set-valued vector mixed variational inequalities in real reflexive Banach spaces. Journal of Industrial and Management Optimization, 2013, 9 (1) : 57-74. doi: 10.3934/jimo.2013.9.57

[8]

Katrin Gelfert. Lower bounds for the topological entropy. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555

[9]

Jaume Llibre. Brief survey on the topological entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363

[10]

Geng-Hua Li, Sheng-Jie Li. Unified optimality conditions for set-valued optimizations. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1101-1116. doi: 10.3934/jimo.2018087

[11]

Marc Rauch. Variational principles for the topological pressure of measurable potentials. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 367-394. doi: 10.3934/dcdss.2017018

[12]

Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295

[13]

Christian Wolf. A shift map with a discontinuous entropy function. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012

[14]

Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control and Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327

[15]

Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201

[16]

Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827

[17]

Lluís Alsedà, David Juher, Francesc Mañosas. Forward triplets and topological entropy on trees. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 623-641. doi: 10.3934/dcds.2021131

[18]

Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 545-557 . doi: 10.3934/dcds.2011.31.545

[19]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[20]

Qingbang Zhang, Caozong Cheng, Xuanxuan Li. Generalized minimax theorems for two set-valued mappings. Journal of Industrial and Management Optimization, 2013, 9 (1) : 1-12. doi: 10.3934/jimo.2013.9.1

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (191)
  • HTML views (108)
  • Cited by (0)

Other articles
by authors

[Back to Top]