Situation | Coriolis force | The velocity | The vorticity |
non-equational | consider | $ (0,0,0) $ | $ (0,0,0) $ |
equational | don't consider | $ (u,v,w) $ | $ (0,\Omega_{2},0) $ |
We study the geophysical fluid dynamical problem of the wind in the steady atmospheric Ekman layer with constant eddy viscosity. Three dimensional Ekman flows with constant vorticity is considered in the $ f- $plane approximation. For non-equatorial $ f- $plane approximation, we show that any bounded solution of the Ekman flow with a flat surface and constant vorticity vector is the stationary flow with vanishing velocity field, while for the equatorial $ f- $plane approximation, we obtain that the pressure presents no variation in the northward direction and the meridional component is constant throughout the fluid domain.
Citation: |
Table 1.
A comparison between the non-equatorial and the equatorial
Situation | Coriolis force | The velocity | The vorticity |
non-equational | consider | $ (0,0,0) $ | $ (0,0,0) $ |
equational | don't consider | $ (u,v,w) $ | $ (0,\Omega_{2},0) $ |
[1] |
C. R. Benoit and J. M. Beckers, Introduction to Geophysical Gluid Dynamics: Physical and Numerical Aspects, Academic Press, New York, 2011.
![]() |
[2] |
A. Bressan and A. Constantin, The deflection angle of surface ocean currents from the wind direction, J. Geophys. Res. Oceans, 124 (2019), 7412-7420.
doi: 10.1029/2019JC015454.![]() ![]() |
[3] |
J. F. Chu, I. K. Delia and Y. J. Yang, Exact solution and instability for geophysical waves with centripetal forces and at arbitrary latitude, J. Math. Fluid Mech., 21 (2019), Art.19, 16pp.
doi: 10.1007/s00021-019-0423-8.![]() ![]() ![]() |
[4] |
J. F. Chu, D. K. Ionescu and Y. J. Yang, Exact solution and instability for geophysical waves at arbitrary latitude, Discrete Contin. Dyn. Syst., 39 (2019), 4399-4414.
doi: 10.3934/dcds.2019178.![]() ![]() ![]() |
[5] |
J. F. Chu and Y. J. Yang, Constant vorticity water flows in the euqatorial $\beta-$plane approximation with centripetal forces, J. Differential Equations, 269 (2020), 9336-9347.
doi: 10.1016/j.jde.2020.06.044.![]() ![]() ![]() |
[6] |
J. F. Chu and Y. J. Yang, A cylindrical coordinates approach to constant vorticity geophysical waves with centripetal forces at arbitrary latitude, J. Differential Equations, 279 (2021), 46-62.
doi: 10.1016/j.jde.2021.01.014.![]() ![]() ![]() |
[7] |
A. Constantin, Two-dimensionality of gravity water flows of constant nonzero vorticity beneath a surface wave train, Eur. J. Mech. B Fluids, 30 (2011), 12-16.
doi: 10.1016/j.euromechflu.2010.09.008.![]() ![]() ![]() |
[8] |
A. Constantin, On the modelling of equatorial waves, Geophysical Research Letters, 39 (2012), L05602.
doi: 10.1029/2012GL051169.![]() ![]() |
[9] |
A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res. Oceans, 117 (2012), C05029.
doi: 10.1029/2012JC007879.![]() ![]() |
[10] |
A. Constantin, Some three-dimensional nonlinear equatorial flows, J. Phys. Oceanogr, 43 (2013), 165-175.
doi: 10.1175/JPO-D-12-062.1.![]() ![]() |
[11] |
A. Constantin, Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr, 44 (2014), 781-789.
doi: 10.1175/JPO-D-13-0174.1.![]() ![]() |
[12] |
A. Constantin and P. Germain, Instability of some equatorially trapped waves, J. Geophys. Res. Oceans, 118 (2013), 2802-2810.
doi: 10.1002/jgrc.20219.![]() ![]() |
[13] |
A. Constantin and R. S. Johnson, Atmospheric Ekman flows with variable eddy viscosity, Boundary-Layer Meteorology, 170 (2019), 395-414.
doi: 10.1007/s10546-018-0404-0.![]() ![]() |
[14] |
A. Constantin and R. S. Johnson, An exact, steady, purely azimuthal equatorial flow with a free surface, J. Geophys. Res. Oceans, 46 (2016), 1935-1945.
doi: 10.1175/JPO-D-15-0205.1.![]() ![]() |
[15] |
A. Constantin and R. S. Johnson, A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the pacific equatorial undercurrent and thermocline, Phys. Fluids, 29 (2017), 056604.
doi: 10.1063/1.4984001.![]() ![]() |
[16] |
A. Constantin and E. Kartashova, Effect of non-zero constant vorticity on the nonlinear resonances of capillary water waves, Europhys. Lett., 86 (2009), 29001.
doi: 10.1209/0295-5075/86/29001.![]() ![]() |
[17] |
A. Constantin and S. G. Monismith, Gerstner waves in the presence of mean currents and rotation, J. Fluid Mech., 820 (2017), 511-528.
doi: 10.1017/jfm.2017.223.![]() ![]() ![]() |
[18] |
D. G. Dritschel, N. Paldor and A. Constantin, The Ekman spiral for piecewise-uniform diffusivity, Ocean Science, 16 (2020), 1089-1093.
doi: 10.5194/os-2020-31.![]() ![]() |
[19] |
V. W. Ekman, On the influence of the Earth's rotation on ocean-currents, Arkiv for Matematik Astronmi Och Fysik, 2 (1905), 1-52.
![]() |
[20] |
L. L. Fan and H. J. Gao, On three-dimensional geophysical capillary-gravity water flows with constant vorticity, Ann. Mat. Pura Appl. (4), 200 (2021), 711-720.
doi: 10.1007/s10231-020-01010-4.![]() ![]() ![]() |
[21] |
M. Fečkan, Y. Guan, D. O'Regan and J. Wang, Existence and uniqueness and first order approximation of solutions to atmospheric Ekman flows, Monatsh. Math., 193 (2020), 623-636.
doi: 10.1007/s00605-020-01414-7.![]() ![]() ![]() |
[22] |
Y. Guan, M. Fečkan and J. Wang, Explicit solution of atmospheric Ekman flows with some types of Eddy viscosity, Monatsh. Math., (2021).
doi: 10.1007/s00605-021-01551-7.![]() ![]() |
[23] |
Y. Guan, M. Fečkan and J. Wang, Explicit solution and dynamical properties of atmospheric Ekman flows with boundary conditions, Electron. J. Qual. Theory Differ. Equ., 2021 (2021), 1-19.
doi: 10.14232/ejqtde.2021.1.3.![]() ![]() ![]() |
[24] |
G. J. Haltinar and R. T. Williams, Numercial Prediction and Dynamic Meteorology, Wiley Press, New York, 1980.
![]() |
[25] |
D. Henry, A modified equatorial $\beta-$plane approximation modelling nonlinear wave-current interactions, J. Differential Equations, 263 (2017), 2554-2566.
doi: 10.1016/j.jde.2017.04.007.![]() ![]() ![]() |
[26] |
D. Henry, Exact equatorial water waves in the $f-$plane, Nonlinear Anal. Real World Appl., 28 (2016), 284-289.
doi: 10.1016/j.nonrwa.2015.10.003.![]() ![]() ![]() |
[27] |
D. Henry, An exact solution for equatorial geophysical water waves with an underlying current, Eur. J. Mech. B Fluids, 38 (2013), 18-21.
doi: 10.1016/j.euromechflu.2012.10.001.![]() ![]() ![]() |
[28] |
D. Henry, Equatorially trapped nonlinear water waves in a $\beta-$plane approximation with centripetal forces, J. Fluid Mech., 804 (2016), R1, 11pp.
doi: 10.1017/jfm.2016.544.![]() ![]() ![]() |
[29] |
D. Henry and C. I. Martin, Exact, free-surface equatorial flows with general stratification in spherical coordinates, Arch. Ration. Mech. Anal., 233 (2019), 497-512.
doi: 10.1007/s00205-019-01362-z.![]() ![]() ![]() |
[30] |
D. Henry and C. I. Martin, Stratified equatorial flows in cylindrical coordinates, Nonlinearity, 33 (2020), 3889-3904.
doi: 10.1088/1361-6544/ab801f.![]() ![]() ![]() |
[31] |
J. R. Holton, An Introduction to Dynamic Meteorology, Academic Press, New York, 2004.
![]() |
[32] |
D. Ionescu-Kruse, Analytical atmospheric Ekman-type solutions with heght-dependent eddy viscosities, J. Math. Fluid Mech., 23 (2021), Art.18, 11pp.
doi: 10.1007/s00021-020-00543-1.![]() ![]() ![]() |
[33] |
D. Ionescu-Kruse, Instability of edge waves along a sloping beach, J. Differential Equations, 256 (2014), 3999-4012.
doi: 10.1016/j.jde.2014.03.009.![]() ![]() ![]() |
[34] |
D. Ionescu-Kruse, Short-wavelength instability of edge waves in stratified water, Discrete Contin. Dyn. Syst., 35 (2015), 2053-2066.
doi: 10.3934/dcds.2015.35.2053.![]() ![]() ![]() |
[35] |
S. Leblanc, Local stability of Gerstner's waves, J. Fluid Mech., 506 (2004), 245-254.
doi: 10.1017/S0022112004008444.![]() ![]() ![]() |
[36] |
C. I. Martin, Two-dimensionality of gravity water flows governed by the equatorial $f-$plane approximation, Ann. Mat. Pura Appl.(4), 196 (2017), 2253-2260.
doi: 10.1007/s10231-017-0663-2.![]() ![]() ![]() |
[37] |
C. I. Martin, Constant vorticity water flows with full Coriolis term, Nonlinearity, 32 (2019), 2327-2336.
doi: 10.1088/1361-6544/ab1c76.![]() ![]() ![]() |
[38] |
C. I. Martin, On constant vorticity water flows in the $\beta-$plane approximation, J. Fluid Mech., 865 (2019), 762-774.
doi: 10.1017/jfm.2019.95.![]() ![]() ![]() |
[39] |
C. I. Martin, Geophysical water flows with constant vorticity and centripetal terms, Ann. Mat. Pura Appl.(4), 200 (2021), 101-116.
doi: 10.1007/s10231-020-00985-4.![]() ![]() ![]() |
[40] |
J. Pedlosky, Geophysical Fluid Dynamic, Springer-Verlag Press, New York, 1987.
![]() |
[41] |
J. Wang, M. Fečkan and Y. Guan, Constant vorticity Ekman flows in the $\beta-$plane approximation, J. Math. Fluid Mech., 23 (2021), Art.85, 11pp.
doi: 10.1007/s00021-021-00612-z.![]() ![]() ![]() |
[42] |
W. Zdunkowski and A. Bott, Dynamics of the Atmosphere, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511805462.![]() ![]() |
The flow domain