In this paper, we analyze a mathematical model of the SIER type which includes susceptible and infected and removed people. In this model, we compute $ {\mathcal{R}_1} $ in strain one and $ {\mathcal{R}_2} $ in strain two. Then we compute the equilibrium points and then determine the global stability.
Citation: |
[1] |
J. Arino, C. C. McCluskey and P. Van den Driessche, Global results for an epidemic model with vaccination that exhibits backward bifurcation, SIAM J. Appl. Math., 64 (2003), 260-276.
doi: 10.1137/S0036139902413829.![]() ![]() ![]() |
[2] |
D. Bentaleb, S. Harroudi, S. Amine and K. Allali, Analysis and optimal control of a multistrain SEIR epidemic model with saturated incidence rate and treatment, Differential Equations and Dynamical Systems, 13 (2020), 1-7.
doi: 10.1007/s12591-020-00544-6.![]() ![]() |
[3] |
C. P. Bhunu and W. Garira, A two strain tuberculosis transmission model with therapy and quarantine, Math. Mod. Anal., 14 (2009), 291-312.
doi: 10.3846/1392-6292.2009.14.291-312.![]() ![]() ![]() |
[4] |
S. Bonhoeffer and M. Nowak, Mutation and the evolution of parasite virulence, Proc. R. Soc. London. B., 258 (1994), 133-140.
![]() |
[5] |
C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications, Math. Bio. Eng., 1 (2004), 361-404.
doi: 10.3934/mbe.2004.1.361.![]() ![]() ![]() |
[6] |
A. Denes, Y. Muroya and G. Rost, Global stability of a multistrain SIS model with superinfection, Math. Bio. Eng., 14 (2017), 421-435.
doi: 10.3934/mbe.2017026.![]() ![]() ![]() |
[7] |
B. Fang, X. Z. Li, M. Martcheva and L. M. Cai, Global asymptotic properties of a heroin epidemic model with treat-age, Appl. Math. Comput., 263 (2015), 315-331.
doi: 10.1016/j.amc.2015.04.055.![]() ![]() ![]() |
[8] |
A. S. Kalula and F. Nyabadza, A theoretical model for substance abuse in the presence of treatment, South African Journal of Science, 108 (2012), 1-12.
![]() |
[9] |
O. Khyar and K. Allali, Global dynamics of a multi-strain SEIR epidemic model with general incidence rate: Application to COVID-19 pandemic, Nonlinear Dynamics, 102 (2020), 489-509.
doi: 10.1007/s11071-020-05929-4.![]() ![]() |
[10] |
C. Li, Y. Zhang and Y. Zhou, Competitive coexistence in a two-strain epidemic model with a periodic infection rate, Discrete Dyn. Nat. Soc., 2020 (2020), Art. ID 7541861, 10 pp.
doi: 10.1155/2020/7541861.![]() ![]() ![]() |
[11] |
M. Y. Li and J. S. Muldowney, A geometric approach to global-stability problems, SIAM J. Math. Anal., 27 (1996), 1070-1083.
doi: 10.1137/S0036141094266449.![]() ![]() ![]() |
[12] |
M. Y. Li and J. S. Muldowney, On R.A. Smith's autonomous convergence theorem, Rocky Mountain J. Math., 25 (1995), 365-378.
doi: 10.1216/rmjm/1181072289.![]() ![]() ![]() |
[13] |
S. Liu, L. Zhang and Y. Xing, Dynamics of a stochastic heroin epidemic model, J. Comput. Appl. Math., 351 (2019), 260-269.
doi: 10.1016/j.cam.2018.11.005.![]() ![]() ![]() |
[14] |
W. M. Liu, S. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187-204.
doi: 10.1007/BF00276956.![]() ![]() ![]() |
[15] |
M. Lizana and J. Rivero, Multiparametric bifurcations for a model in epi- demiology, J. Math. Biol., 35 (1996), 21-36.
doi: 10.1007/s002850050040.![]() ![]() ![]() |
[16] |
M. Ma, S. Liu and J. Li, Bifurcation of a heroin model with nonlinear incidence rate, Nonlinear Dynamics, 88 (2017), 555-565.
doi: 10.1007/s11071-016-3260-9.![]() ![]() |
[17] |
D. R. Mackintosh and G. T. Stewart, A mathematical model of a heroin epidemic: Implications for control policies, J. Epidemiology and Community Health, 33 (1979), 299-304.
doi: 10.1136/jech.33.4.299.![]() ![]() |
[18] |
M. Martcheva, An Introduction to Mathematical Epidemiology, Springer, New York, 2015.
doi: 10.1007/978-1-4899-7612-3.![]() ![]() ![]() |
[19] |
M. Martcheva and X. Z. Li, Linking immunological and epidemiological dynamics of HIV: The case of superinfection, J. Biol. Dyn., 7 (2013), 161-182.
doi: 10.1080/17513758.2013.820358.![]() ![]() ![]() |
[20] |
R. M. May and M. Nowak, Coinfection and the evolution of parasite virulence, Proc. R. Soc. London. B., 261 (1995), 209-215.
![]() |
[21] |
J. Mushanyu, F. Nyabadza, G. Muchatibaya and A. G. Stewart, Modeling multiple relapses in drug epidemics, Ric. Mat., 65 (2016), 37-63.
doi: 10.1007/s11587-015-0241-0.![]() ![]() ![]() |
[22] |
H. J. B. Njagarah and F. Nyabadza, Modeling the impact of rehabilitation, amelioration, and relapse on the prevalence of drug epidemics, J. Biol. Systems, 21 (2013), 1350001, 23 pp.
doi: 10.1142/S0218339013500010.![]() ![]() ![]() |
[23] |
M. Nowak and R. M. May, Superinfection and the evolution of parasite virulence, Proc. R. Soc. London. B., 255 (1994), 81-89.
![]() |
[24] |
M. Nuno, Z. Feng, M. Martcheva and C. Castillo-Chavez, Dynamics of two-strain influenza with isolation and partial cross-immunity, SIAM J. Appl. Math., 65 (2005), 964-982.
doi: 10.1137/S003613990343882X.![]() ![]() ![]() |
[25] |
F. Nyabadza, J. B. Njagarah and R. J. Smith, Modeling the dynamics of crystal meth ('tik') abuse in the presence of drug-supply chains in South Africa, Bull. Math. Biol., 75 (2013), 24-48.
doi: 10.1007/s11538-012-9790-5.![]() ![]() ![]() |
[26] |
M. Pourhosseini and R. Memarbashi, Relationship between addicts with incurable diseases in an epidemic model, Math. Meth. Appl. Sci., 44 (2021), 7820-7833.
doi: 10.1002/mma.7011.![]() ![]() ![]() |
[27] |
P. Van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6.![]() ![]() ![]() |
[28] |
E. White and C. Comiskey, Heroin epidemics, treatment and ODE modeling, Math. Biosci., 208 (2007), 312-324.
doi: 10.1016/j.mbs.2006.10.008.![]() ![]() ![]() |
The flowchart of the model
The occurence of
The occurence of
The occurence of
The occurence of backward bifurcation when,