doi: 10.3934/dcdsb.2022027
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Existence of complete Lyapunov functions with prescribed orbital derivative

1. 

Department of Mathematics, University of Sussex, Falmer, Brighton, BN1 9QH, United Kingdom

2. 

Faculty of Physical Sciences, Dunhagi 5,107 Reykjavík, Iceland; Current address: Faculty of Physical Sciences, University of Iceland, Dunhagi 5,107 Reykjavík, Iceland

3. 

Fakultät für Mathematik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany

*Corresponding author: Stefan Suhr

Received  September 2021 Revised  January 2022 Early access February 2022

Fund Project: Suhr is partially supported by the SFB/TRR 191 "Symplectic Structures in Geometry, Algebra and Dynamics", funded by the Deutsche Forschungsgemeinschaft

Complete Lyapunov functions for a dynamical system, given by an autonomous ordinary differential equation, are scalar-valued functions that are strictly decreasing along orbits outside the chain-recurrent set. In this paper we show that we can prescribe the (negative) values of the derivative along orbits in any compact set, which is contained in the complement of the chain-recurrent set. Further, the complete Lyapunov function is as smooth as the vector field defining the dynamics. This delivers a theoretical foundation for numerical methods to construct complete Lyapunov functions and renders them accessible for further theoretical analysis and development.

 

Addendum: “Current address: Faculty of Physical Sciences, University of Iceland, Dunhagi 5,107 Reykjavík, Iceland” is added for the second author Sigurdur Freyr Hafstein. We apologize for any inconvenience this may cause.

Citation: Peter Giesl, Sigurdur Freyr Hafstein, Stefan Suhr. Existence of complete Lyapunov functions with prescribed orbital derivative. Discrete and Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2022027
References:
[1]

C. Argáez, P. Giesl and S. Hafstein, Analysing dynamical systems towards computing complete Lyapunov functions, In Proceedings of the 7th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, Madrid, Spain, (2017), 323–330.

[2]

C. ArgáezP. Giesl and S. Hafstein, Complete Lyapunov functions: Computation and applications, Simulation and Modeling Methodologies, Technologies and Applications, 873 (2017), 200-221. 

[3]

J. Auslander, Generalized recurrence in dynamical systems, Contributions to Differential Equations, 3 (1964), 65-74. 

[4]

H. Ban and W. Kalies, A computational approach to Conley's decomposition theorem, J. Comput. Nonlinear Dynam, 1 (2006), 312-319.  doi: 10.1115/1.2338651.

[5]

P. Bernhard and S. Suhr, Lyapounov functions of closed cone fields: From Conley theory to time functions, Comm. Math. Phys., 359 (2018), 467-498.  doi: 10.1007/s00220-018-3127-7.

[6]

C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, 38. American Mathematical Society, Providence, R.I., 1978.

[7]

M. Dellnitz and O. Junge, Set oriented numerical methods for dynamical systems, Handbook of Dynamical Systems, 2 (2002), 221-264.  doi: 10.1016/S1874-575X(02)80026-1.

[8]

A. Fathi and P. Pageault, Smoothing Lyapunov functions, Trans. Amer. Math. Soc., 371 (2019), 1677-1700.  doi: 10.1090/tran/7329.

[9]

A. Fathi and A. Siconolfi, On smooth time functions, Math. Proc. Cambridge Philos. Soc., 152 (2012), 303-339.  doi: 10.1017/S0305004111000661.

[10]

P. GieslC. ArgáezS. Hafstein and H. Wendland, Construction of a complete Lyapunov function using quadratic programming, Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics, 1 (2018), 560-568.  doi: 10.5220/0006944305600568.

[11]

P. GieslC. ArgáezS. Hafstein and H. Wendland, Minimization with differential inequality constraints applied to complete Lyapunov functions, Math. Comp., 90 (2021), 2137-2160.  doi: 10.1090/mcom/3629.

[12]

S. Hafstein and S. Suhr, Smooth complete Lyapunov functions for ODEs, J. Math. Anal. Appl., 499 (2021), Paper No. 125003, 15 pp. doi: 10.1016/j.jmaa.2021.125003.

[13]

S. W. Hawking, The existence of cosmic time functions, Proc. Roy. Soc. London Ser. A, 308 (1969), 433-435. 

[14]

M. Hurley, Chain recurrence and attraction in non-compact spaces, Ergodic Theory Dynam. Systems, 11 (1991), 709-729.  doi: 10.1017/S014338570000643X.

[15]

M. Hurley, Chain recurrence, semiflows, and gradients, J. Dyn. Diff. Equat., 7 (1995), 437-456.  doi: 10.1007/BF02219371.

[16]

M. Hurley, Lyapunov functions and attractors in arbitrary metric spaces, Proc. Amer. Math. Soc., 126 (1998), 245-256.  doi: 10.1090/S0002-9939-98-04500-6.

[17]

W. KaliesK. Mischaikow and R. VanderVorst, An algorithmic approach to chain recurrence, Found. Comput. Math, 5 (2005), 409-449.  doi: 10.1007/s10208-004-0163-9.

[18]

G. Osipenko, Dynamical Systems, Graphs, and Algorithms, Lecture Notes in Math. 1889, Springer, 2007.

[19]

M. Patrão, Existence of complete Lyapunov functions for semiflows on separable metric spaces, Far East J. Dyn. Syst., 17 (2011), 49-54. 

show all references

References:
[1]

C. Argáez, P. Giesl and S. Hafstein, Analysing dynamical systems towards computing complete Lyapunov functions, In Proceedings of the 7th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, Madrid, Spain, (2017), 323–330.

[2]

C. ArgáezP. Giesl and S. Hafstein, Complete Lyapunov functions: Computation and applications, Simulation and Modeling Methodologies, Technologies and Applications, 873 (2017), 200-221. 

[3]

J. Auslander, Generalized recurrence in dynamical systems, Contributions to Differential Equations, 3 (1964), 65-74. 

[4]

H. Ban and W. Kalies, A computational approach to Conley's decomposition theorem, J. Comput. Nonlinear Dynam, 1 (2006), 312-319.  doi: 10.1115/1.2338651.

[5]

P. Bernhard and S. Suhr, Lyapounov functions of closed cone fields: From Conley theory to time functions, Comm. Math. Phys., 359 (2018), 467-498.  doi: 10.1007/s00220-018-3127-7.

[6]

C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, 38. American Mathematical Society, Providence, R.I., 1978.

[7]

M. Dellnitz and O. Junge, Set oriented numerical methods for dynamical systems, Handbook of Dynamical Systems, 2 (2002), 221-264.  doi: 10.1016/S1874-575X(02)80026-1.

[8]

A. Fathi and P. Pageault, Smoothing Lyapunov functions, Trans. Amer. Math. Soc., 371 (2019), 1677-1700.  doi: 10.1090/tran/7329.

[9]

A. Fathi and A. Siconolfi, On smooth time functions, Math. Proc. Cambridge Philos. Soc., 152 (2012), 303-339.  doi: 10.1017/S0305004111000661.

[10]

P. GieslC. ArgáezS. Hafstein and H. Wendland, Construction of a complete Lyapunov function using quadratic programming, Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics, 1 (2018), 560-568.  doi: 10.5220/0006944305600568.

[11]

P. GieslC. ArgáezS. Hafstein and H. Wendland, Minimization with differential inequality constraints applied to complete Lyapunov functions, Math. Comp., 90 (2021), 2137-2160.  doi: 10.1090/mcom/3629.

[12]

S. Hafstein and S. Suhr, Smooth complete Lyapunov functions for ODEs, J. Math. Anal. Appl., 499 (2021), Paper No. 125003, 15 pp. doi: 10.1016/j.jmaa.2021.125003.

[13]

S. W. Hawking, The existence of cosmic time functions, Proc. Roy. Soc. London Ser. A, 308 (1969), 433-435. 

[14]

M. Hurley, Chain recurrence and attraction in non-compact spaces, Ergodic Theory Dynam. Systems, 11 (1991), 709-729.  doi: 10.1017/S014338570000643X.

[15]

M. Hurley, Chain recurrence, semiflows, and gradients, J. Dyn. Diff. Equat., 7 (1995), 437-456.  doi: 10.1007/BF02219371.

[16]

M. Hurley, Lyapunov functions and attractors in arbitrary metric spaces, Proc. Amer. Math. Soc., 126 (1998), 245-256.  doi: 10.1090/S0002-9939-98-04500-6.

[17]

W. KaliesK. Mischaikow and R. VanderVorst, An algorithmic approach to chain recurrence, Found. Comput. Math, 5 (2005), 409-449.  doi: 10.1007/s10208-004-0163-9.

[18]

G. Osipenko, Dynamical Systems, Graphs, and Algorithms, Lecture Notes in Math. 1889, Springer, 2007.

[19]

M. Patrão, Existence of complete Lyapunov functions for semiflows on separable metric spaces, Far East J. Dyn. Syst., 17 (2011), 49-54. 

Figure 1.  Schematic figure of a flow box $ \mathcal{V}_{\tau', r, T} $
Figure 2.  Schematic presentation of the sets $ \mathcal{V}_{s_i, 1} $ in the construction of the functions $ \tilde{\tau}_i $
Figure 3.  The first step. Note that $ M $ can intersect the boundary of $ [-(k+1), k+1]\times W_s $ at $ \{-(k+1)\}\times W_s $ and $ [-(k+1), k+1)\times \partial W_s $, but not at $ \{k+1\}\times W_s $ (right side)
Figure 4.  The second step
Figure 5.  The third step
Figure 6.  The fourth step
[1]

Víctor Ayala, Adriano Da Silva, Philippe Jouan. Jordan decomposition and the recurrent set of flows of automorphisms. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1543-1559. doi: 10.3934/dcds.2020330

[2]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[3]

Yubo Yuan, Weiguo Fan, Dongmei Pu. Spline function smooth support vector machine for classification. Journal of Industrial and Management Optimization, 2007, 3 (3) : 529-542. doi: 10.3934/jimo.2007.3.529

[4]

Hiromichi Nakayama, Takeo Noda. Minimal sets and chain recurrent sets of projective flows induced from minimal flows on $3$-manifolds. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 629-638. doi: 10.3934/dcds.2005.12.629

[5]

Suzanne Lynch Hruska. Rigorous numerical models for the dynamics of complex Hénon mappings on their chain recurrent sets. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 529-558. doi: 10.3934/dcds.2006.15.529

[6]

Jianfeng Lv, Yan Gao, Na Zhao. The viability of switched nonlinear systems with piecewise smooth Lyapunov functions. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1825-1843. doi: 10.3934/jimo.2020048

[7]

Michael Schönlein. Asymptotic stability and smooth Lyapunov functions for a class of abstract dynamical systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4053-4069. doi: 10.3934/dcds.2017172

[8]

Peter Giesl. Construction of a global Lyapunov function using radial basis functions with a single operator. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 101-124. doi: 10.3934/dcdsb.2007.7.101

[9]

Andrei Korobeinikov, Philip K. Maini. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences & Engineering, 2004, 1 (1) : 57-60. doi: 10.3934/mbe.2004.1.57

[10]

Łukasz Struski, Jacek Tabor. Expansivity implies existence of Hölder continuous Lyapunov function. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3575-3589. doi: 10.3934/dcdsb.2017180

[11]

Robert Baier, Lars Grüne, Sigurđur Freyr Hafstein. Linear programming based Lyapunov function computation for differential inclusions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 33-56. doi: 10.3934/dcdsb.2012.17.33

[12]

Hjörtur Björnsson, Sigurdur Hafstein, Peter Giesl, Enrico Scalas, Skuli Gudmundsson. Computation of the stochastic basin of attraction by rigorous construction of a Lyapunov function. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4247-4269. doi: 10.3934/dcdsb.2019080

[13]

Peter Giesl. Construction of a finite-time Lyapunov function by meshless collocation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2387-2412. doi: 10.3934/dcdsb.2012.17.2387

[14]

Armin Eftekhari, Michael B. Wakin, Ping Li, Paul G. Constantine. Randomized learning of the second-moment matrix of a smooth function. Foundations of Data Science, 2019, 1 (3) : 329-387. doi: 10.3934/fods.2019015

[15]

Boling Guo, Haiyang Huang. Smooth solution of the generalized system of ferro-magnetic chain. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 729-740. doi: 10.3934/dcds.1999.5.729

[16]

Sanyi Tang, Wenhong Pang. On the continuity of the function describing the times of meeting impulsive set and its application. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1399-1406. doi: 10.3934/mbe.2017072

[17]

Deqiang Qu, Youlin Shang, Dan Wu, Guanglei Sun. Filled function method to optimize supply chain transportation costs. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021115

[18]

Laetitia Paoli. A proximal-like algorithm for vibro-impact problems with a non-smooth set of constraints. Conference Publications, 2011, 2011 (Special) : 1186-1195. doi: 10.3934/proc.2011.2011.1186

[19]

Markus Dick, Martin Gugat, Günter Leugering. A strict $H^1$-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction. Numerical Algebra, Control and Optimization, 2011, 1 (2) : 225-244. doi: 10.3934/naco.2011.1.225

[20]

Martin Gugat, Günter Leugering, Ke Wang. Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-lyapunov function. Mathematical Control and Related Fields, 2017, 7 (3) : 419-448. doi: 10.3934/mcrf.2017015

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (187)
  • HTML views (93)
  • Cited by (0)

[Back to Top]