doi: 10.3934/dcdsb.2022038
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

A spatially and size-structured population model with unbounded birth process

Department of Mathematics, Faculty of Sciences, Ibn Zohr University, Hay Dakhla, BP8106, 80000–Agadir, Morocco

Received  June 2021 Revised  January 2022 Early access March 2022

In this paper, we consider a spatially and size structured population model with unbounded birth process. Firstly, the model is transformed into a closed-loop system, and hence the well-posedness is established by using the feedback theory of regular linear systems. Moreover, the solution to the resulting closed-loop system is given by a perturbed semigroup. Secondly, we give a condition on birth and death rates in such a way that the solution decays exponentially. To do this, we show that the semigroup solution is positive and hence we derive a characterization of exponential stability due to the technique tools of positive semigroups. We mention that our results extend a previous work in [D. Yan and X. Fu, Comm. Pure Appl. Anal. 15 (2016), 637–655] to the unbounded situation.

Citation: Abed Boulouz. A spatially and size-structured population model with unbounded birth process. Discrete and Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2022038
References:
[1]

D. M. AuslanderG. F. Oster and C. B. Huffaker, Dynamics of interacting populations, J. Franklin Inst., 297 (1974), 345-376. 

[2]

G. D. Blasio, Nonlinear age-dependent population growth with history-dependent birth rate, Math. Biosci., 46 (1979), 279-291.  doi: 10.1016/0025-5564(79)90073-7.

[3]

A. Boulouz, H. Bounit and S. Hadd, Feedback theory approach to positivity and stability of evolution equations, Syst & Control Lett., 161 (2022) 105167.

[4]

K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Systems, New York, Springer-Verlag, 2000.

[5]

J. Z. Farkas, Stability conditions for a nonlinear size-structured model, Nonlinear Anal. Real World Appl., 6 (2005), 962-969.  doi: 10.1016/j.nonrwa.2004.06.002.

[6]

J. Z. Farkas and T. Hagen, Stability and regularity results for a size-structured population model, J. Math. Anal. Appl., 328 (2007), 119-136.  doi: 10.1016/j.jmaa.2006.05.032.

[7]

G. Greiner, A typical Perron–Frobenius theorem with applications to an age-dependent population equation, Infinite-dimensional systems, 1076 (1984), 86-100.  doi: 10.1007/BFb0072769.

[8]

G. Greiner, Perturbing the boundary conditions of a generator, Houston J. Math., 13 (1987), 213-229. 

[9]

B. Guo and W. Chan, A semigroup approach to age dependent population dynamics with time delay, Comm. Partial Differential Equations, 14 (1989), 809-832.  doi: 10.1080/03605308908820630.

[10]

M. Gyllenberg and G. F. Webb, Asynchronous exponential growth of semigroups of nonlinear operators, J. Math. Anal. Appl., 167 (1992), 443-467.  doi: 10.1016/0022-247X(92)90218-3.

[11]

S. HaddR. Manzo and A. Rhandi, Unbounded perturbations of the generator domain, Discr. Cont. Dyn. Syst., 35 (2015), 703-723.  doi: 10.3934/dcds.2015.35.703.

[12]

M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Giardini Editori, Pisa, 1994.

[13]

Z. LiuP. Magal and H. Tang, Hopf bifurcation for a spatially and age structured population dynamics model, Discr. Cont. Dyn. Syst. B, 20 (2015), 1735-1757.  doi: 10.3934/dcdsb.2015.20.1735.

[14]

Z. Mei and J. G. Peng, Dynamic boundary systems with boundary feedback and population system with unbounded birth process, Math. Meth. Appl. Sci., 38 (2015), 1642-1651.  doi: 10.1002/mma.3175.

[15]

S. Pizzera, An age dependent population equation with delayed birth process, Math. Meth. Appl. Sci., 27 (2004), 427-439.  doi: 10.1002/mma.462.

[16]

S. Pizzera and L. Tonetto, Asynchronous exponential growth for an age dependent population equation with delayed birth process, J. Evol. Equ., 5 (2005), 61-77.  doi: 10.1007/s00028-004-0159-6.

[17]

A. Rhandi and R. Schnaubelt, Asymptotic behaviour of a non-autonomous population equation with diffusion in L1, Discr. Cont. Dyn. Syst., 5 (1999), 663-683.  doi: 10.3934/dcds.1999.5.663.

[18]

W. E. Ricker, Computation and interpretation of biological studies of fish populations, Bull. Fish. Res. Board Can., 191 (1975).

[19]

D. Salamon, Infinite-dimensional linear system with unbounded control and observation: A functional analytic approach, Trans. Amer. Math. Soc., 300 (1987), 383-431.  doi: 10.2307/2000351.

[20]

J. O. Staffans, Well-posed Linear Systems, Encyclopedia of Mathematics and its Applications, 103, Cambridge: Cambridge University Press, 2005. doi: 10.1017/CBO9780511543197.

[21]

G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Monographs and Textbooks in Pure and Applied Mathematics, vol. 89, Marcel Dekker, New York, 1985.

[22]

L. Weis, The stability of positive semigroups on $L^p$-spaces, Proc. Amer. Math. Soc., 123 (1995), 3089-3094.  doi: 10.2307/2160665.

[23]

G. Weiss, Regular linear systems with feedback, Math. Control Signals Systems, 7 (1994), 23-57.  doi: 10.1007/BF01211484.

[24]

D. Yan and X. Fu, Asymptotic analysis a spatially and size-structured population dynamics model with delayed birth process, Comm. Pure Appl. Anal., 15 (2016), 637-655.  doi: 10.3934/cpaa.2016.15.637.

show all references

References:
[1]

D. M. AuslanderG. F. Oster and C. B. Huffaker, Dynamics of interacting populations, J. Franklin Inst., 297 (1974), 345-376. 

[2]

G. D. Blasio, Nonlinear age-dependent population growth with history-dependent birth rate, Math. Biosci., 46 (1979), 279-291.  doi: 10.1016/0025-5564(79)90073-7.

[3]

A. Boulouz, H. Bounit and S. Hadd, Feedback theory approach to positivity and stability of evolution equations, Syst & Control Lett., 161 (2022) 105167.

[4]

K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Systems, New York, Springer-Verlag, 2000.

[5]

J. Z. Farkas, Stability conditions for a nonlinear size-structured model, Nonlinear Anal. Real World Appl., 6 (2005), 962-969.  doi: 10.1016/j.nonrwa.2004.06.002.

[6]

J. Z. Farkas and T. Hagen, Stability and regularity results for a size-structured population model, J. Math. Anal. Appl., 328 (2007), 119-136.  doi: 10.1016/j.jmaa.2006.05.032.

[7]

G. Greiner, A typical Perron–Frobenius theorem with applications to an age-dependent population equation, Infinite-dimensional systems, 1076 (1984), 86-100.  doi: 10.1007/BFb0072769.

[8]

G. Greiner, Perturbing the boundary conditions of a generator, Houston J. Math., 13 (1987), 213-229. 

[9]

B. Guo and W. Chan, A semigroup approach to age dependent population dynamics with time delay, Comm. Partial Differential Equations, 14 (1989), 809-832.  doi: 10.1080/03605308908820630.

[10]

M. Gyllenberg and G. F. Webb, Asynchronous exponential growth of semigroups of nonlinear operators, J. Math. Anal. Appl., 167 (1992), 443-467.  doi: 10.1016/0022-247X(92)90218-3.

[11]

S. HaddR. Manzo and A. Rhandi, Unbounded perturbations of the generator domain, Discr. Cont. Dyn. Syst., 35 (2015), 703-723.  doi: 10.3934/dcds.2015.35.703.

[12]

M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Giardini Editori, Pisa, 1994.

[13]

Z. LiuP. Magal and H. Tang, Hopf bifurcation for a spatially and age structured population dynamics model, Discr. Cont. Dyn. Syst. B, 20 (2015), 1735-1757.  doi: 10.3934/dcdsb.2015.20.1735.

[14]

Z. Mei and J. G. Peng, Dynamic boundary systems with boundary feedback and population system with unbounded birth process, Math. Meth. Appl. Sci., 38 (2015), 1642-1651.  doi: 10.1002/mma.3175.

[15]

S. Pizzera, An age dependent population equation with delayed birth process, Math. Meth. Appl. Sci., 27 (2004), 427-439.  doi: 10.1002/mma.462.

[16]

S. Pizzera and L. Tonetto, Asynchronous exponential growth for an age dependent population equation with delayed birth process, J. Evol. Equ., 5 (2005), 61-77.  doi: 10.1007/s00028-004-0159-6.

[17]

A. Rhandi and R. Schnaubelt, Asymptotic behaviour of a non-autonomous population equation with diffusion in L1, Discr. Cont. Dyn. Syst., 5 (1999), 663-683.  doi: 10.3934/dcds.1999.5.663.

[18]

W. E. Ricker, Computation and interpretation of biological studies of fish populations, Bull. Fish. Res. Board Can., 191 (1975).

[19]

D. Salamon, Infinite-dimensional linear system with unbounded control and observation: A functional analytic approach, Trans. Amer. Math. Soc., 300 (1987), 383-431.  doi: 10.2307/2000351.

[20]

J. O. Staffans, Well-posed Linear Systems, Encyclopedia of Mathematics and its Applications, 103, Cambridge: Cambridge University Press, 2005. doi: 10.1017/CBO9780511543197.

[21]

G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Monographs and Textbooks in Pure and Applied Mathematics, vol. 89, Marcel Dekker, New York, 1985.

[22]

L. Weis, The stability of positive semigroups on $L^p$-spaces, Proc. Amer. Math. Soc., 123 (1995), 3089-3094.  doi: 10.2307/2160665.

[23]

G. Weiss, Regular linear systems with feedback, Math. Control Signals Systems, 7 (1994), 23-57.  doi: 10.1007/BF01211484.

[24]

D. Yan and X. Fu, Asymptotic analysis a spatially and size-structured population dynamics model with delayed birth process, Comm. Pure Appl. Anal., 15 (2016), 637-655.  doi: 10.3934/cpaa.2016.15.637.

[1]

Jacques Henry. For which objective is birth process an optimal feedback in age structured population dynamics?. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 107-114. doi: 10.3934/dcdsb.2007.8.107

[2]

Cecilia Cavaterra, M. Grasselli. Robust exponential attractors for population dynamics models with infinite time delay. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1051-1076. doi: 10.3934/dcdsb.2006.6.1051

[3]

Carlos Cabrera, Peter Makienko, Peter Plaumann. Semigroup representations in holomorphic dynamics. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1333-1349. doi: 10.3934/dcds.2013.33.1333

[4]

Nguyen H. Sau, Vu N. Phat. LP approach to exponential stabilization of singular linear positive time-delay systems via memory state feedback. Journal of Industrial and Management Optimization, 2018, 14 (2) : 583-596. doi: 10.3934/jimo.2017061

[5]

Pierre Magal. Global stability for differential equations with homogeneous nonlinearity and application to population dynamics. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 541-560. doi: 10.3934/dcdsb.2002.2.541

[6]

Xiang-Ping Yan, Wan-Tong Li. Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 367-399. doi: 10.3934/dcdsb.2012.17.367

[7]

Gang Huang, Yasuhiro Takeuchi, Rinko Miyazaki. Stability conditions for a class of delay differential equations in single species population dynamics. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2451-2464. doi: 10.3934/dcdsb.2012.17.2451

[8]

Wei Feng, Jody Hinson. Stability and pattern in two-patch predator-prey population dynamics. Conference Publications, 2005, 2005 (Special) : 268-279. doi: 10.3934/proc.2005.2005.268

[9]

Atul Narang, Sergei S. Pilyugin. Toward an Integrated Physiological Theory of Microbial Growth: From Subcellular Variables to Population Dynamics. Mathematical Biosciences & Engineering, 2005, 2 (1) : 169-206. doi: 10.3934/mbe.2005.2.169

[10]

Leonid Shaikhet. Stability of a positive equilibrium state for a stochastically perturbed mathematical model of glassy-winged sharpshooter population. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1167-1174. doi: 10.3934/mbe.2014.11.1167

[11]

Ross Cressman, Vlastimil Křivan. Using chemical reaction network theory to show stability of distributional dynamics in game theory. Journal of Dynamics and Games, 2021  doi: 10.3934/jdg.2021030

[12]

Yuyun Zhao, Yi Zhang, Tao Xu, Ling Bai, Qian Zhang. pth moment exponential stability of hybrid stochastic functional differential equations by feedback control based on discrete-time state observations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 209-226. doi: 10.3934/dcdsb.2017011

[13]

Salvatore Rionero. A nonlinear $L^2$-stability analysis for two-species population dynamics with dispersal. Mathematical Biosciences & Engineering, 2006, 3 (1) : 189-204. doi: 10.3934/mbe.2006.3.189

[14]

Andrea Caravaggio, Luca Gori, Mauro Sodini. Population dynamics and economic development. Discrete and Continuous Dynamical Systems - B, 2021, 26 (11) : 5827-5848. doi: 10.3934/dcdsb.2021178

[15]

Maoan Han, Xiaoyan Hou, Lijuan Sheng, Chaoyang Wang. Theory of rotated equations and applications to a population model. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2171-2185. doi: 10.3934/dcds.2018089

[16]

Wei Feng, Xin Lu, Richard John Donovan Jr.. Population dynamics in a model for territory acquisition. Conference Publications, 2001, 2001 (Special) : 156-165. doi: 10.3934/proc.2001.2001.156

[17]

Luca Gerardo-Giorda, Pierre Magal, Shigui Ruan, Ousmane Seydi, Glenn Webb. Preface: Population dynamics in epidemiology and ecology. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : i-ii. doi: 10.3934/dcdsb.2020125

[18]

H. T. Banks, John E. Banks, R. A. Everett, John D. Stark. An adaptive feedback methodology for determining information content in stable population studies. Mathematical Biosciences & Engineering, 2016, 13 (4) : 653-671. doi: 10.3934/mbe.2016013

[19]

Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219

[20]

Luisa Arlotti, Bertrand Lods. Transport semigroup associated to positive boundary conditions of unit norm: A Dyson-Phillips approach. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2739-2766. doi: 10.3934/dcdsb.2014.19.2739

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (192)
  • HTML views (87)
  • Cited by (0)

Other articles
by authors

[Back to Top]