[1]
|
N. Abdellatif, R. Fekih-Salem and T. Sari, Competition for a single resource and coexistence of several species in the chemostat, Math. Biosci. Eng., 13 (2016), 631-652.
doi: 10.3934/mbe.2016012.
|
[2]
|
M. Ballyk, R. Staffeldt and I. Jawarneh, A nutrient-prey-predator model: Stability and bifurcations, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 2975-3004.
doi: 10.3934/dcdss.2020192.
|
[3]
|
B. Bar and T. Sari, The operating diagram for a model of competition in a chemostat with an external lethal inhibitor, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 2093-2120.
doi: 10.3934/dcdsb.2019203.
|
[4]
|
B. Benyahia, T. Sari, B. Cherki and J. Harmand, Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes, J. Proc. Control, 22 (2012), 1008-1019.
doi: 10.1016/j.jprocont.2012.04.012.
|
[5]
|
O. Bernard, Z. Hadj-Sadok, D. Dochain, A. Genovesi and J.-P. Steyer, Dynamical model development and parameter identification for an anaerobic wastewater treatment process, Biotechnol. Bioeng., 75 (2001), 424-438.
doi: 10.1002/bit.10036.
|
[6]
|
M. P. Boer, B. W. Kooi and S. A. L. M. Kooijman, Food chain dynamics in the chemostat, Math. Biosci., 150 (1998), 43-62.
doi: 10.1016/S0025-5564(98)00010-8.
|
[7]
|
F. Borsali and K. Yadi, Contribution to the study of the effect of the interspecificity on a two nutrients competition model, Int. J. Biomath., 8 (2015), 1550008, 17 pp.
doi: 10.1142/S1793524515500084.
|
[8]
|
M. Dali-Youcef, A. Rapaport and T. Sari, Study of performance criteria of serial configuration of two chemostats, Math. Biosci. Eng., 17 (2020), 6278-6309.
doi: 10.3934/mbe.2020332.
|
[9]
|
Y. Daoud, N. Abdellatif, T. Sari and J. Harmand, Steady state analysis of a syntrophic model: The effect of a new input substrate concentration, Math. Model. Nat. Phenom., 13 (2018), Paper No. 31, 21 pp.
doi: 10.1051/mmnp/2018037.
|
[10]
|
P. De Leenheer, D. Angeli and E. D. Sontag, Crowding effects promote coexistence in the chemostat, J. Math. Anal. Appl., 319 (2006), 48-60.
doi: 10.1016/j.jmaa.2006.02.036.
|
[11]
|
M. Dellal and B. Bar, Global analysis of a model of competition in the chemostat with internal inhibitor, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 1129-1148.
doi: 10.3934/dcdsb.2020156.
|
[12]
|
M. Dellal, M. Lakrib and T. Sari, The operating diagram of a model of two competitors in a chemostat with an external inhibitor, Math. Biosci., 302 (2018), 27-45.
doi: 10.1016/j.mbs.2018.05.004.
|
[13]
|
A. Dhooge, W. Govaerts, Y. A. Kuznetsov, H. G. E. Meijer and B. Sautois, New features of the software MatCont for bifurcation analysis of dynamical systems, Math. Comput. Model. Dyn. Syst., 14 (2008), 147-175.
doi: 10.1080/13873950701742754.
|
[14]
|
M. El-Hajji, How can inter-specific interferences explain coexistence or confirm the competitive exclusion principle in a chemostat?, Int. J. Biomath., 11 (2018), 1850111, 20 pp.
doi: 10.1142/S1793524518501115.
|
[15]
|
M. El-Hajji, F. Mazenc and J. Harmand, A mathematical study of a syntrophic relationship of a model of anaerobic digestion process, Math. Biosci. Eng., 7 (2010), 641-656.
doi: 10.3934/mbe.2010.7.641.
|
[16]
|
R. Fekih-Salem, J. Harmand, C. Lobry, A. Rapaport and T. Sari, Extensions of the chemostat model with flocculation, J. Math. Anal. Appl., 397 (2013), 292-306.
doi: 10.1016/j.jmaa.2012.07.055.
|
[17]
|
R. Fekih-Salem, C. Lobry and T. Sari, A density-dependent model of competition for one resource in the chemostat, Math. Biosc., 268 (2017), 104-122.
doi: 10.1016/j.mbs.2017.02.007.
|
[18]
|
R. Fekih-Salem, A. Rapaport and T. Sari, Emergence of coexistence and limit cycles in the chemostat model with flocculation for a general class of functional responses, Appl. Math. Modell., 40 (2016), 7656-7677.
doi: 10.1016/j.apm.2016.03.028.
|
[19]
|
R. Fekih-Salem and T. Sari, Properties of the chemostat model with aggregated biomass and distinct removal rates, SIAM J. Appl. Dyn. Syst. (SIADS), 18 (2019), 481-509.
doi: 10.1137/18M1171801.
|
[20]
|
R. Fekih-Salem and T. Sari, Operating diagram of a flocculation model in the chemostat, ARIMA J., 31 (2020), 45-58.
doi: 10.46298/arima.5593.
|
[21]
|
B. Haegeman and A. Rapaport, How flocculation can explain coexistence in the chemostat, J. Biol. Dyn., 2 (2008), 1-13.
doi: 10.1080/17513750801942537.
|
[22]
|
M. Hanaki, J. Harmand, Z. Mghazli, A. Rapaport, T. Sari and P. Ugalde, Mathematical study of a two-stage anaerobic model when the hydrolysis is the limiting step, Processes, 9 (2021).
doi: 10.3390/pr9112050.
|
[23]
|
S. R. Hansen and S. P. Hubbell, Single-nutrient microbial competition: Qualitative agreement between experimental and theoretically forecast outcomes, Science, 207 (1980), 1491-1493.
doi: 10.1126/science.6767274.
|
[24]
|
J. Harmand, C. Lobry, A. Rapaport and T. Sari, The Chemostat: Mathematical Theory of Microorganism Cultures, Chemostat and bioprocesses set., Vol. 1. ISTE, London; John Wiley & Sons, Inc., Hoboken, NJ, 2017.
doi: 10.1002/9781119437215.
|
[25]
|
J. Harmand, A. Rapaport, D. Dochain and C. Lobry, Microbial ecology and bioprocess control: Opportunities and challenges, Journal of Process Control, 18 (2008), 865-875.
doi: 10.1016/j.jprocont.2008.06.017.
|
[26]
|
S.-B. Hsu, C. A. Klausmeier and C.-J. Lin, Analysis of a model of two parallel food chains, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 337-359.
doi: 10.3934/dcdsb.2009.12.337.
|
[27]
|
Z. Khedim, B. Benyahia, B. Cherki, T. Sari and J. Harmand, Effect of control parameters on biogas production during the anaerobic digestion of protein-rich substrates, Appl. Math. Model., 61 (2018), 351-376.
doi: 10.1016/j.apm.2018.04.020.
|
[28]
|
B. W. Kooi and M. P. Boer, Chaotic behaviour of a predator-prey system in the chemostat, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 10 (2003), 259-272.
|
[29]
|
B. Li and Y. Kuang, Simple food chain in a chemostat with distinct removal rates, J. Math. Anal. Appl., 242 (2000), 75-92.
doi: 10.1006/jmaa.1999.6655.
|
[30]
|
C. Lobry and J. Harmand, A new hypothesis to explain the coexistence of n species in the presence of a single resource, C. R. Biol., 329 (2006), 40-46.
doi: 10.1016/j.crvi.2005.10.004.
|
[31]
|
C. Lobry and F. Mazenc, Effect on persistence of intra-specific competition in competition models, Electron. J. Diff. Equ., 125 (2007), 1-10.
|
[32]
|
C. Lobry, F. Mazenc and A. Rapaport, Persistence in ecological models of competition for a single resource, C. R. Acad. Sci. Paris, Ser. I, 340 (2005), 199-204.
doi: 10.1016/j.crma.2004.12.021.
|
[33]
|
C. Lobry, A. Rapaport and F. Mazenc, Sur un modèle densité-dépendant de compétition pour une ressource, C. R. Biol., 329 (2006), 63-70.
doi: 10.1016/j.crvi.2005.11.004.
|
[34]
|
MAPLE [Software], Version 13.0, Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario, (2009).
|
[35]
|
MATCONT [Software], Matcontsoft, (2021).
|
[36]
|
T. Mtar, R. Fekih-Salem and T. Sari, Interspecific density-dependent model of predator-prey relationship in the chemostat, Int. J. Biomath., 14 (2021), 2050086, 22 pp.
doi: 10.1142/S1793524520500862.
|
[37]
|
T. Mtar, R. Fekih-Salem and T. Sari, Effect of the mortality on a density-dependent model with a predator-prey relationship, CARI'2020, Proceedings of the 15th African Conference on Research in Computer Science and Applied Mathematics, (2020).
|
[38]
|
S. Nouaoura, N. Abdellatif, R. Fekih-Salem and T. Sari, Mathematical analysis of a three-tiered model of anaerobic digestion, SIAM J. Appl. Math., 81 (2021), 1264-1286.
doi: 10.1137/20M1353897.
|
[39]
|
S. Nouaoura, R. Fekih-Salem, N. Abdellatif and T. Sari, Mathematical analysis of a three-tiered food-web in the chemostat, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 5601-5625.
doi: 10.3934/dcdsb.2020369.
|
[40]
|
S. Nouaoura, R. Fekih-Salem, N. Abdellatif and T. Sari, Operating diagrams for a three-tiered microbial food web in the chemostat, Preprint HAL, (2021).
|
[41]
|
A. Rapaport and M. Veruete, A new proof of the competitive exclusion principle in the chemostat, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 3755-3764.
doi: 10.3934/dcdsb.2018314.
|
[42]
|
T. Sari and B. Benyahia, The operating diagram for a two-step anaerobic digestion model, Nonlinear Dynam., 105 (2021), 2711-2737.
doi: 10.1007/s11071-021-06722-7.
|
[43]
|
T. Sari and J. Harmand, A model of a syntrophic relationship between two microbial species in a chemostat including maintenance, Math. Biosci., 275 (2016), 1-9.
doi: 10.1016/j.mbs.2016.02.008.
|
[44]
|
T. Sari and M. J. Wade, Generalised approach to modelling a three-tiered microbial food-web, Math. Biosci., 291 (2017), 21-37.
doi: 10.1016/j.mbs.2017.07.005.
|
[45]
|
M. Sbarciog, M. Loccufier and E. Noldus, Determination of appropriate operating strategies for anaerobic digestion systems, Biochem. Eng. J., 51 (2010), 180-188.
doi: 10.1016/j.bej.2010.06.016.
|
[46]
|
SCILAB [Software], version 6.0.1, Scilab, Enterprises SAS (2018).
|
[47]
|
S. Shen, G. C. Premier, A. Guwy and R. Dinsdale, Bifurcation and stability analysis of an anaerobic digestion model, Nonlinear Dynam., 48 (2007), 391-408.
doi: 10.1007/s11071-006-9093-1.
|
[48]
|
H. L. Smith and P. Waltman, The Theory of the Chemostat, Dynamics of Microbial Competition, Cambridge University Press, 1995.
doi: 10.1017/CBO9780511530043.
|
[49]
|
S. Sobieszek, M. J. Wade and G. S. K. Wolkowicz, Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow, Math. Biosci. Eng., 17 (2020), 7045-7073.
doi: 10.3934/mbe.2020363.
|
[50]
|
G. A. K. Van Voorn, B. W. Kooi and M. P. Boer, Ecological consequences of global bifurcations in some food chain models, Math. Biosci., 226 (2010), 120-133.
doi: 10.1016/j.mbs.2010.04.005.
|
[51]
|
D. V. Vayenas and S. Pavlou, Chaotic dynamics of a food web in a chemostat, Math. Biosci., 162 (1999), 69-84.
doi: 10.1016/S0025-5564(99)00044-9.
|
[52]
|
M. J. Wade, J. Oakley, S. Harbisher, N. G. Parker and J. Dolfing, MI-Sim: A MATLAB package for the numerical analysis of microbial ecological interactions, PLoS ONE, 12 (2017), 0173249.
doi: 10.1371/journal.pone.0173249.
|
[53]
|
M. J. Wade, R. W. Pattinsonm, N. G. Parker and J. Dolfing, Emergent behaviour in a chlorophenol-mineralising three-tiered microbial 'food web', J. Theor. Biol., 389 (2016), 171-186.
doi: 10.1016/j.jtbi.2015.10.032.
|
[54]
|
M. Weedermann, G. S. K. Wolkowicz and J. Sasara, Optimal biogas production in a model for anaerobic digestion, Nonlinear Dyn., 81 (2015), 1097-1112.
doi: 10.1007/s11071-015-2051-z.
|
[55]
|
G. S. K. Wolkowicz, Successful invasion of a food web in a chemostat, Math. Biosci., 93 (1989), 249-268.
doi: 10.1016/0025-5564(89)90025-4.
|
[56]
|
A. Xu, J. Dolfing, T. P. Curtis, G. Montague and E. Martin, Maintenance affects the stability of a two-tiered microbial 'food chain'?, J. Theor. Biol., 276 (2011), 35-41.
doi: 10.1016/j.jtbi.2011.01.026.
|