Article Contents
Article Contents

# A novel numerical method based on a high order polynomial approximation of the fourth order Steklov equation and its eigenvalue problems

• *Corresponding author: Jing An and Jianwei Zhou

This work is supported by the National Natural Science Foundation of China (Grant No.12061023), and Guizhou Provincial Education Department Foundation (Qianjiaohe No.KY[2018]041)

• Based on high order polynomial approximation and dimension reduction technique, we propose a novel numerical method for the fourth order Steklov problems in the circular domain. We first decompose the primal problem into a set of 1D problems via polar coordinate transformation and Fourier basis functions expansion. Then, by introducing a non-uniformly weighed Sobolev space, the variational form and corresponding discrete scheme are derived. Employing the Lax-Milgram lemma and approximation properties of the projection operators, we further prove existence and uniqueness of weak solutions and approximation solutions for each one-dimensional problems, and the error estimation between them, respectively. We also carry out ample numerical experiments which illustrate that the numerical algorithm is efficient and highly accurate.

Mathematics Subject Classification: 65N15, 65N25, 65N35.

 Citation:

• Figure 1.  The comparison between approximation solutions $v_{MN}$ for $N = 30,M = 15$(left), $N = 50, M = 25$(center), and reference solution(right)

Figure 2.  The error between reference solution and approximation solutions $v_{MN}$ for $N = 30,M = 15$(left), $N = 50$ and $M = 25$(right)

Figure 3.  The error tendency for the fixed $M$(left) and the fixed $N$(right)

Figure 4.  The error between exact solution and approximation solution for $N = 30$(left), $N = 50$(right)

Table 1.  The errors E(v, vMN) with different N and M.

 N M=5 M=10 M=15 M=20 M=25 10 9.6887e-07 1.0025e-04 1.0637e-04 1.0676e-04 1.0685e-04 20 5.4884e-08 5.6948e-12 4.7867e-08 9.1367e-06 1.0056e-05 30 5.4884e-08 4.7638e-13 1.2520e-17 7.9545e-13 9.1848e-09 40 5.4884e-08 4.7638e-13 1.0309e-17 1.0308e-17 1.0367e-17 50 5.4884e-08 4.7638e-13 9.0532e-18 9.0513e-18 9.0513e-18

Table 2.  The first eigenvalue λmN for m = 0, 1, 2, 3 and different N.

 N λ0N λ1N λ2N λ3N 4 1.999999999999998 4.000000000000001 5.999999999999999 8.059210526315789 6 1.999999999999999 3.999999999999998 5.999999999999998 7.999999999999998 8 2.000000000000000 4.000000000000001 6.000000000000001 8.000000000000004 10 2.000000000000001 4.000000000000001 6.000000000000003 7.999999999999993 12 2.000000000000001 4.000000000000001 6.000000000000002 8.000000000000007

Table 3.  The first eigenvalue λmN for m = 0, 1, 2, 3 and different h.

 h λ0h λ1h λ2h λ3h 1/4 2.000000032363347 4.000000018720217 6.000436469604340 8.005030682333810 1/6 2.000000028811607 4.000000048950857 6.000081442394085 8.000975861078535 1/8 2.000000024461073 4.000000073005518 6.000025208583129 8.000307091454056 1/10 2.000000022604670 4.000000056975401 6.000010214870977 8.000125489065235 1/12 2.000000020581500 4.000000061763554 6.000004896294027 8.000060442986863
•  [1] J. An, H. Bi and Z. Luo, A highly efficient spectral-Galerkin method based on tensor product for fourth-order Steklov equation with boundary eigenvalue, J. Inequal. Appl., 2016 (2016), 1-12.  doi: 10.1186/s13660-016-1158-1. [2] J. An, H. Li and Z. Zhang, Spectral-Galerkin approximation and optimal error estimate for biharmonic eigenvalue problems in circular/spherical/elliptical domains, Numer. Algorithms, 84 (2020), 427-455.  doi: 10.1007/s11075-019-00760-4. [3] J. An and Z. Zhang, An efficient spectral-Galerkin approximation and error analysis for Maxwell transmission eigenvalue problems in spherical geometries, J. Sci. Comput., 75 (2018), 157-181.  doi: 10.1007/s10915-017-0528-2. [4] A. B. Andreev and T. D. Todorov, Isoparametric finite-element approximation of a Steklov eigenvalue problem, IMA J. Numer. Anal., 24 (2004), 309-322.  doi: 10.1093/imanum/24.2.309. [5] S. Bergman and  M. Schiffer,  Kernel Functions and Elliptic Differential Equations in Mathematical Physics, Academic Press, Inc., New York, N.Y., 1953. [6] E. Berchio, F. Gazzola and E. Mitidieri, Positivity preserving property for a class of biharmonic elliptic problems, J. Differential Equations, 229 (2006), 1-23.  doi: 10.1016/j.jde.2006.04.003. [7] A. Bermúdez, R. Rodríguez and D. Santamarina, A finite element solution of an added mass formulation for coupled fluid-solid vibrations, Numer. Math., 87 (2000), 201-227.  doi: 10.1007/s002110000175. [8] H. Bi, H. Li and Y. Yang, An adaptive algorithm based on the shifted inverse iteration for the Steklov eigenvalue problem, Appl. Numer. Math., 105 (2016), 64-81.  doi: 10.1016/j.apnum.2016.02.003. [9] H. Bi, S. Ren and Y. Yang, Conforming finite element approximations for a fourth-order Steklov eigenvalue problem, Math. Probl. Eng., 2011 (2011), Art. ID 873152, 13 pp. doi: 10.1155/2011/873152. [10] H. Bi and Y. Yang, A two-grid method of the non-conforming crouzeix–raviart element for the Steklov eigenvalue problem, Appl. Math. Comput., 217 (2011), 9669-9678.  doi: 10.1016/j.amc.2011.04.051. [11] D. Bucur, A. Ferrero and F. Gazzola, On the first eigenvalue of a fourth order Steklov problem, Calc. Var. Partial Differential Equations, 35 (2009), 103-131.  doi: 10.1007/s00526-008-0199-9. [12] D. Bucur and F. Gazzola, The first biharmonic Steklov eigenvalue: Positivity preserving and shape optimization, Milan J. Math., 79 (2011), 247-258.  doi: 10.1007/s00032-011-0143-x. [13] C. Conca, J. Planchard and M. Vanninathan, Fluids and Periodic Structures, John Wiley and Sons, Ltd., Chichester; Masson, Paris, 1995. [14] A. Ferrero, F. Gazzola and T. Weth, On a fourth order Steklov eigenvalue problem, Analysis, 25 (2005), 315-332.  doi: 10.1524/anly.2005.25.4.315. [15] F. Gazzola and G. Sweers, On positivity for the biharmonic operator under Steklov boundary conditions, Arch. Ration. Mech. Anal., 188 (2008), 399-427.  doi: 10.1007/s00205-007-0090-4. [16] X. Han, Y. Li and H. Xie, A multilevel correction method for Steklov eigenvalue problem by nonconforming finite element methods, Numer. Math. Theory Methods Appl., 8 (2015), 383-405.  doi: 10.4208/nmtma.2015.m1334. [17] J. R. Kuttler, Remarks on a Stekloff eigenvalue problem, SIAM J. Numer. Anal., 9 (1972), 1-5.  doi: 10.1137/0709001. [18] L. Li and J. An, An efficient spectral method and rigorous error analysis based on dimension reduction scheme for fourth order problems, Numer. Methods Partial Differential Equations, 37 (2021), 152-171.  doi: 10.1002/num.22523. [19] Q. Li, Q. Lin and H. Xie, Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations, Appl. Math., 58 (2013), 129-151.  doi: 10.1007/s10492-013-0007-5. [20] Q. Li and Y. Yang, A two-grid discretization scheme for the Steklov eigenvalue problem, J. Appl. Math. Comput., 36 (2011), 129-139.  doi: 10.1007/s12190-010-0392-9. [21] E. Sassone, Positivity for polyharmonic problems on domains close to a disk, Ann. Mat. Pura Appl., 186 (2007), 419-432.  doi: 10.1007/s10231-006-0012-3. [22] J. Shen and  T. Tang,  Spectral and High-Order Methods with Applications, Science Press, Beijing, 2006. [23] J. Shen, T. Tang and L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer Series in Computational Mathematics, 41. Springer, Heidelberg, 2011. doi: 10.1007/978-3-540-71041-7. [24] W. Stekloff, Sur les problèmes fondamentaux de la physique mathématique, Ann. Sci. École Norm. Sup., 19 (1902), 191-259.  doi: 10.24033/asens.510. [25] T. Tan and J. An, Spectral Galerkin approximation and rigorous error analysis for the Steklov eigenvalue problem in circular domain, Math. Methods Appl. Sci., 41 (2018), 3764-3778.  doi: 10.1002/mma.4863. [26] H. Xie, A type of multilevel method for the Steklov eigenvalue problem, IMA J. Numer. Anal., 34 (2014), 592-608.  doi: 10.1093/imanum/drt009. [27] F. Xu, A full multigrid method for the Steklov eigenvalue problem, Int. J. Comput. Math., 96 (2019), 2371-2386.  doi: 10.1080/00207160.2018.1562060. [28] F. Xu, L. Chen and Q. Huang, Local defect-correction method based on multilevel discretization for Steklov eigenvalue problem, ESAIM Math. Model. Numer. Anal., 55 (2021), 2899-2920.  doi: 10.1051/m2an/2021076. [29] Y. Yang, Q. Li and S. Li, Nonconforming finite element approximations of the Steklov eigenvalue problem, Appl. Numer. Math., 59 (2009), 2388-2401.  doi: 10.1016/j.apnum.2009.04.005.

Figures(4)

Tables(3)