[1]
|
J. An, H. Bi and Z. Luo, A highly efficient spectral-Galerkin method based on tensor product for fourth-order Steklov equation with boundary eigenvalue, J. Inequal. Appl., 2016 (2016), 1-12.
doi: 10.1186/s13660-016-1158-1.
|
[2]
|
J. An, H. Li and Z. Zhang, Spectral-Galerkin approximation and optimal error estimate for biharmonic eigenvalue problems in circular/spherical/elliptical domains, Numer. Algorithms, 84 (2020), 427-455.
doi: 10.1007/s11075-019-00760-4.
|
[3]
|
J. An and Z. Zhang, An efficient spectral-Galerkin approximation and error analysis for Maxwell transmission eigenvalue problems in spherical geometries, J. Sci. Comput., 75 (2018), 157-181.
doi: 10.1007/s10915-017-0528-2.
|
[4]
|
A. B. Andreev and T. D. Todorov, Isoparametric finite-element approximation of a Steklov eigenvalue problem, IMA J. Numer. Anal., 24 (2004), 309-322.
doi: 10.1093/imanum/24.2.309.
|
[5]
|
S. Bergman and M. Schiffer, Kernel Functions and Elliptic Differential Equations in Mathematical Physics, Academic Press, Inc., New York, N.Y., 1953.
|
[6]
|
E. Berchio, F. Gazzola and E. Mitidieri, Positivity preserving property for a class of biharmonic elliptic problems, J. Differential Equations, 229 (2006), 1-23.
doi: 10.1016/j.jde.2006.04.003.
|
[7]
|
A. Bermúdez, R. Rodríguez and D. Santamarina, A finite element solution of an added mass formulation for coupled fluid-solid vibrations, Numer. Math., 87 (2000), 201-227.
doi: 10.1007/s002110000175.
|
[8]
|
H. Bi, H. Li and Y. Yang, An adaptive algorithm based on the shifted inverse iteration for the Steklov eigenvalue problem, Appl. Numer. Math., 105 (2016), 64-81.
doi: 10.1016/j.apnum.2016.02.003.
|
[9]
|
H. Bi, S. Ren and Y. Yang, Conforming finite element approximations for a fourth-order Steklov eigenvalue problem, Math. Probl. Eng., 2011 (2011), Art. ID 873152, 13 pp.
doi: 10.1155/2011/873152.
|
[10]
|
H. Bi and Y. Yang, A two-grid method of the non-conforming crouzeix–raviart element for the Steklov eigenvalue problem, Appl. Math. Comput., 217 (2011), 9669-9678.
doi: 10.1016/j.amc.2011.04.051.
|
[11]
|
D. Bucur, A. Ferrero and F. Gazzola, On the first eigenvalue of a fourth order Steklov problem, Calc. Var. Partial Differential Equations, 35 (2009), 103-131.
doi: 10.1007/s00526-008-0199-9.
|
[12]
|
D. Bucur and F. Gazzola, The first biharmonic Steklov eigenvalue: Positivity preserving and shape optimization, Milan J. Math., 79 (2011), 247-258.
doi: 10.1007/s00032-011-0143-x.
|
[13]
|
C. Conca, J. Planchard and M. Vanninathan, Fluids and Periodic Structures, John Wiley and Sons, Ltd., Chichester; Masson, Paris, 1995.
|
[14]
|
A. Ferrero, F. Gazzola and T. Weth, On a fourth order Steklov eigenvalue problem, Analysis, 25 (2005), 315-332.
doi: 10.1524/anly.2005.25.4.315.
|
[15]
|
F. Gazzola and G. Sweers, On positivity for the biharmonic operator under Steklov boundary conditions, Arch. Ration. Mech. Anal., 188 (2008), 399-427.
doi: 10.1007/s00205-007-0090-4.
|
[16]
|
X. Han, Y. Li and H. Xie, A multilevel correction method for Steklov eigenvalue problem by nonconforming finite element methods, Numer. Math. Theory Methods Appl., 8 (2015), 383-405.
doi: 10.4208/nmtma.2015.m1334.
|
[17]
|
J. R. Kuttler, Remarks on a Stekloff eigenvalue problem, SIAM J. Numer. Anal., 9 (1972), 1-5.
doi: 10.1137/0709001.
|
[18]
|
L. Li and J. An, An efficient spectral method and rigorous error analysis based on dimension reduction scheme for fourth order problems, Numer. Methods Partial Differential Equations, 37 (2021), 152-171.
doi: 10.1002/num.22523.
|
[19]
|
Q. Li, Q. Lin and H. Xie, Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations, Appl. Math., 58 (2013), 129-151.
doi: 10.1007/s10492-013-0007-5.
|
[20]
|
Q. Li and Y. Yang, A two-grid discretization scheme for the Steklov eigenvalue problem, J. Appl. Math. Comput., 36 (2011), 129-139.
doi: 10.1007/s12190-010-0392-9.
|
[21]
|
E. Sassone, Positivity for polyharmonic problems on domains close to a disk, Ann. Mat. Pura Appl., 186 (2007), 419-432.
doi: 10.1007/s10231-006-0012-3.
|
[22]
|
J. Shen and T. Tang, Spectral and High-Order Methods with Applications, Science Press, Beijing, 2006.
|
[23]
|
J. Shen, T. Tang and L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer Series in Computational Mathematics, 41. Springer, Heidelberg, 2011.
doi: 10.1007/978-3-540-71041-7.
|
[24]
|
W. Stekloff, Sur les problèmes fondamentaux de la physique mathématique, Ann. Sci. École Norm. Sup., 19 (1902), 191-259.
doi: 10.24033/asens.510.
|
[25]
|
T. Tan and J. An, Spectral Galerkin approximation and rigorous error analysis for the Steklov eigenvalue problem in circular domain, Math. Methods Appl. Sci., 41 (2018), 3764-3778.
doi: 10.1002/mma.4863.
|
[26]
|
H. Xie, A type of multilevel method for the Steklov eigenvalue problem, IMA J. Numer. Anal., 34 (2014), 592-608.
doi: 10.1093/imanum/drt009.
|
[27]
|
F. Xu, A full multigrid method for the Steklov eigenvalue problem, Int. J. Comput. Math., 96 (2019), 2371-2386.
doi: 10.1080/00207160.2018.1562060.
|
[28]
|
F. Xu, L. Chen and Q. Huang, Local defect-correction method based on multilevel discretization for Steklov eigenvalue problem, ESAIM Math. Model. Numer. Anal., 55 (2021), 2899-2920.
doi: 10.1051/m2an/2021076.
|
[29]
|
Y. Yang, Q. Li and S. Li, Nonconforming finite element approximations of the Steklov eigenvalue problem, Appl. Numer. Math., 59 (2009), 2388-2401.
doi: 10.1016/j.apnum.2009.04.005.
|