[1]
|
R. A. Adams and J. J. Fournier, Sobolev Spaces, 2$^{end}$ edition, Elsevier/Academic Press, Amsterdam, 2003.
|
[2]
|
C. Bernardi, M. Dauge and Y. Maday, Spectral Methods for Axisymmetric Domains, North-Holland, Amsterdam, 1999.
|
[3]
|
C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, New York, 1988.
doi: 10.1007/978-3-642-84108-8.
|
[4]
|
J. Cao, J. Zhang and X. Yang, Fully-discrete spectral-Galerkin scheme with second-order time-accuracy and unconditionally energy stability for the volume-conserved phase-field lipid vesicle model, J. Comput. Appl. Math., 406 (2022), 113988, 18 pp.
doi: 10.1016/j.cam.2021.113988.
|
[5]
|
Y. Chen and F. Huang, Galerkin spectral approximation of elliptic optimal control problems with $H^1$-norm state constraint, J. Sci. Comput, 67 (2016), 65-83.
doi: 10.1007/s10915-015-0071-y.
|
[6]
|
Y. Chen and F. Huang, Spectral method approximation of flow optimal control problems with $H^1$-norm state constraint, Numer. Math. Theory Methods Appl., 10 (2017), 614-638.
doi: 10.4208/nmtma.2017.m1419.
|
[7]
|
Y. Chen, Y. Huang and N. Yi, A posteriori error estimates of spectral method for optimal control problems governed by parabolic equations, Sci. China Ser. A, 51 (2008), 1376-1390.
doi: 10.1007/s11425-008-0097-9.
|
[8]
|
Y. Chen, N. Yi and W. Liu, A Legendre-Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer Anal, 46 (2008), 2254-2275.
doi: 10.1137/070679703.
|
[9]
|
C. M. Elliott and Z. Songmu, On the Cahn-Hilliard equation, Arch. Rational Mech. Anal., 96 (1986), 339-357.
doi: 10.1007/BF00251803.
|
[10]
|
W. Gong and M. Hinze, Error estimates for parabolic optimal control problems with control and state constraints, Comput. Optim. Appl., 56 (2013), 131-151.
doi: 10.1007/s10589-013-9541-z.
|
[11]
|
D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, SIAM, Philadelphia, PA, 1977.
|
[12]
|
B.-Y. Guo, Spectral Methods and Their Applications, World Scientific Publishing Co., Inc., River Edge, NJ, 1998.
doi: 10.1142/3662.
|
[13]
|
Y. Han, A class of fourth-order parabolic equation with arbitrary initial energy, Nonlinear Anal. Real World Appl., 43 (2018), 451-466.
doi: 10.1016/j.nonrwa.2018.03.009.
|
[14]
|
F. Huang and Y. Chen, Error estimates for spectral approximation of elliptic control problems with integral state and control constraints, Comput. Math. Appl., 68 (2014), 789-803.
doi: 10.1016/j.camwa.2014.07.002.
|
[15]
|
F. Huang, Z. Zheng and Y. Peng, Error estimates of the space-time spectral method for parabolic control problems, Comput. Math. Appl., 75 (2018), 335-348.
doi: 10.1016/j.camwa.2017.09.018.
|
[16]
|
J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, New York-Berlin, 1971.
|
[17]
|
C. Liu, A fourth order parabolic equation with nonlinear principal part, Nonlinear Anal., 68 (2008), 393-401.
doi: 10.1016/j.na.2006.11.005.
|
[18]
|
W. Liu and N. Yan, Adaptive Finite Element Methods for Optimal Control Governed by PDEs, Science Press, Beijing, 2008.
|
[19]
|
Z. Lu, F. Cai, R. Xu, C. Hou, X. Wu and Y. Yang, A posteriori error estimates of $hp$ spectral element method for parabolic optimal control problems, AIMS Math., 7 (2022), 5220-5240.
doi: 10.3934/math.2022291.
|
[20]
|
D. Meidner, R. Rannacher and B. Vexler, A priori error estimates for finite element discretizations of parabolic optimization problems with pointwise state constraints in time, SIAM J. Control Optim., 49 (2011), 1961-1997.
doi: 10.1137/100793888.
|
[21]
|
D. Meidner, R. Rannacher and B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems. I. Problems without control constraints, SIAM J. Control Optim., 47 (2008), 1150-1177.
doi: 10.1137/070694016.
|
[22]
|
I. Neitzel, J. Pfefferer and A. Rösch, Finite element discretization of state-constrained elliptic optimal control problems with semilinear state equation, SIAM J. Control Optim., 53 (2015), 874-904.
doi: 10.1137/140960645.
|
[23]
|
I. Neitzel and B. Vexler, A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems, Numer. Math., 120 (2012), 345-386.
doi: 10.1007/s00211-011-0409-9.
|
[24]
|
J. Shen, Efficient spectral-Galerkin method I: Direct solvers for second and fourth order equations by using Legendre polynomials, SIAM J. Sci. Comput., 15 (1994), 1489-1505.
doi: 10.1137/0915089.
|
[25]
|
J. Shen and T. Tang, Spectral and High-Order Methods with Applications, Science Press, Beijing, 2006.
|
[26]
|
J. Shen, T. Tang and L.-L. Wang, Spectral Methods. Algorithms, Analysis and Applications, Springer, Heidelberg, 2011.
doi: 10.1007/978-3-540-71041-7.
|
[27]
|
J. Shen and L.-L. Wang, Fourierization of the Legendre-Galerkin method and a new space-time spectral method, Appl. Numer. Math., 57 (2007), 710-720.
doi: 10.1016/j.apnum.2006.07.012.
|
[28]
|
I. Silberman, Planetary waves in the atmosphere, J. Atmospheric Sciences, 11 (1954), 27-34.
doi: 10.1175/1520-0469(1954)011<0027:PWITA>2.0.CO;2.
|
[29]
|
B. Sun, Z.-Z. Tao and Y.-Y. Wang, Dynamic programming viscosity solution approach and its applications to optimal control problems, In Mathematics Applied to Engineering, Modelling, and Social Issues, Springer, Cham, 200 (2019), 363–420.
|
[30]
|
Z.-Z. Tao and B. Sun, Galerkin spectral method for a fourth-order optimal control problem with $H^1$-norm state constraint, Comput. Math. Appl., 97 (2021), 1-17.
doi: 10.1016/j.camwa.2021.05.023.
|
[31]
|
T. P. Witelski, Similarity solutions of the lubrication equation, Appl. Math. Lett., 10 (1997), 107-113.
doi: 10.1016/S0893-9659(97)00092-X.
|
[32]
|
H. Zhang, F. Liu, X. Jiang and I. Turner, Spectral method for the two-dimensional time distributed-order diffusion-wave equation on a semi-infinite domain, J. Comput. Appl. Math., 399 (2022), Paper No. 113712, 15 pp.
doi: 10.1016/j.cam.2021.113712.
|
[33]
|
J. Zhou and D. Yang, Spectral mixed Galerkin method for state constrained optimal control problem governed by the first bi-harmonic equation, Int. J. Comput. Math., 88 (2011), 2988-3011.
doi: 10.1080/00207160.2011.563845.
|
[34]
|
J. Zhou, J. Zhang and X. Xing, Galerkin spectral approximations for optimal control problems governed by the fourth order equation with an integral constraint on state, Comput Math Appl., 72 (2016), 2549-2561.
doi: 10.1016/j.camwa.2016.08.009.
|