We are concerned with the time-asymptotic stability of planar rarefaction wave to a non-conservative two-phase flow system described by two-dimentional compressible Euler and Navier-Stokes equations through drag force. In this paper, we show the planar rarefaction wave to a non-conservative compressible two-phase model is asymptotically stable under small initial perturbation in $ H^3 $. The main difficulties overcome in this paper come from the non-viscosity of one fluid and the interaction between two fluids caused by drag force. The stability result is proved by the energy method.
Citation: |
[1] |
R. Duan and S. Liu, Global stability of rarefaction waves of the Navier-Stokes-Poisson system, J. Differ. Equ., 258 (2015), 2495-2530.
doi: 10.1016/j.jde.2014.12.019.![]() ![]() ![]() |
[2] |
R. Duan, S. Liu, H. Yin and C. Zhu, Stability of the rarefaction wave for a two-fluid plasma model with diffusion, Sci. China Math., 59 (2016), 67-84.
doi: 10.1007/s11425-015-5059-4.![]() ![]() ![]() |
[3] |
R. Duan and X. Yang, Stability of rarefaction wave and boundary layer for outflow problem on the two-fluid Navier-Stokes-Poisson equations, Commun. Pure Appl. Anal., 12 (2013), 985-1014.
doi: 10.3934/cpaa.2013.12.985.![]() ![]() ![]() |
[4] |
F. Huang and T. Wang, Stability of superposition of viscous contact wave and rarefaction waves for compressible Navier-Stokes system, Indiana U. Math. J., 65 (2016), 1833-1875.
doi: 10.1512/iumj.2016.65.5914.![]() ![]() ![]() |
[5] |
Q. Jiu, Y. Wang and Z. Xin, Vacuum behaviors around rarefaction waves to 1D compressible Navier-Stokes equations with density-dependent viscosity, SIAM J. Math. Anal., 45 (2013), 3194-3228.
doi: 10.1137/120879919.![]() ![]() ![]() |
[6] |
P. D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math., 10 (1957), 537-566.
doi: 10.1002/cpa.3160100406.![]() ![]() ![]() |
[7] |
L.-A. Li and Y. Wang, Stability of the planar rarefaction wave to two-dimensional compressible Navier-Stokes equations, SIAM J. Math. Anal., 50 (2018), 4937-4963.
doi: 10.1137/18M1171059.![]() ![]() ![]() |
[8] |
L.-A. Li, T. Wang and Y. Wang, Stability of planar rarefaction wave to 3D full compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 230 (2018), 911-937.
doi: 10.1007/s00205-018-1260-2.![]() ![]() ![]() |
[9] |
L.-A. Li, D. Wang and Y. Wang, Vanishing viscosity limit to the planar rarefaction wave for the two-dimensional compressible Navier-Stokes equations, Comm. Math. Phys., 376 (2020), 353-384.
doi: 10.1007/s00220-019-03580-8.![]() ![]() ![]() |
[10] |
L.-A. Li, D. Wang and Y. Wang, Vanishing dissipation limit to the planar rarefaction wave for the three-dimensional compressible Navier-Stokes-Fourier equations, J. Funct. Anal., 283 (2022), Paper No. 109499.
doi: 10.48550/arXiv.2101.04291.![]() ![]() ![]() |
[11] |
H.-L. Li, T. Wang and Y. Wang, Wave phenomena to the three-dimensional fluid-particle model, Arch. Ration. Mech. Anal., 243 (2022), 1019-1089.
doi: 10.1007/s00205-021-01747-z.![]() ![]() ![]() |
[12] |
T. Luo, H. Yin and C. Zhu, Stability of the rarefaction wave for a coupled compressible Navier-Stokes/Allen-Cahn system, Math. Methods Appl. Sci., 41 (2018), 4724-4736.
doi: 10.1002/mma.4925.![]() ![]() ![]() |
[13] |
A. Matsumura and K. Nishihara, Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math., 3 (1986), 1-13.
doi: 10.1007/BF03167088.![]() ![]() ![]() |
[14] |
A. Matsumura and K. Nishihara, Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas, Comm. Math. Phys., 144 (1992), 325-335.
doi: 10.1007/BF02101095.![]() ![]() ![]() |
[15] |
K. Nishihara, T. Yang and H. Zhao, Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations, SIAM J. Math. Anal., 35 (2004), 1561-1597.
doi: 10.1137/S003614100342735X.![]() ![]() ![]() |
[16] |
V. A. Solonnikov, On solvability of an initial-boundary value problem for the equations of motion of a viscous compressible fluid, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 56 (1976), 128-142.
![]() ![]() |
[17] |
S. Wang and Y. Zhao, Stability of planar rarefaction wave to a multi-dimensional non-conservative viscous compressible two-phase flow, J. Math. Anal. Appl., 506 (2022), Paper No. 125657, 33 pp.
doi: 10.1016/j.jmaa.2021.125657.![]() ![]() ![]() |
[18] |
T. Wang and Y. Wang, Stability of planar rarefaction wave to the three-dimensional Boltzmann equation, Kinet. Relat. Models, 12 (2019), 637-679.
doi: 10.3934/krm.2019025.![]() ![]() ![]() |
[19] |
H. Yin, J. Zhang and C. Zhu, Stability of the superposition of boundary layer and rarefaction wave for outflow problem on the two-fluid Navier-Stokes-Poisson system, Nonlinear Anal. Real World Appl., 31 (2016), 492-512.
doi: 10.1016/j.nonrwa.2016.01.020.![]() ![]() ![]() |
[20] |
H. Yin and C. Zhu, Asymptotic stability of superposition of stationary solutions and rarefaction waves for 1D Navier-Stokes/Allen-Cahn system, J. Differ. Equ., 266 (2019), 7291-7326.
doi: 10.1016/j.jde.2018.11.034.![]() ![]() ![]() |