• Previous Article
    Modeling the second outbreak of COVID-19 with isolation and contact tracing
  • DCDS-B Home
  • This Issue
  • Next Article
    Stability in the energy space of the sum of $ N $ solitary waves for an equation modelling shallow water waves of moderate amplitude
doi: 10.3934/dcdsb.2022106
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Time reversal of surface plasmons

Department of Mathematics, Colorado State University, Fort Collins CO, 80523, USA

* Corresponding author: Olivier Pinaud

Received  November 2021 Revised  April 2022 Early access June 2022

Fund Project: The author is supported by NSF grant DMS-2006416

We study in this work the so-called "instantaneous time mirrors" in the context of surface plasmons. The latter are associated with high frequency waves at the surface of a conducting sheet. Instantaneous time mirrors were introduced in [3], with the idea that singular perturbations in the time variable in a wave-type equation create a time-reversed focusing wave. We consider the time-dependent three-dimensional Maxwell's equations, coupled to Drude's model for the description of the surface current. The time mirror is modeled by a sudden, strong, change in the Drude weight of the electrons on the sheet. Our goal is to characterize the time-reversed wave, in particular to quantify the quality of refocusing. We establish that the latter depends on the distance of the source to the sheet, and on some physical parameters such as the relaxation time of the electrons. We also show that, in addition to the plasmonic wave, the time mirror generates a free propagating wave that offers, contrary to the surface wave, some resolution in the direction orthogonal to the sheet. Blurring effects due to non-instantaneous mirrors are finally investigated.

Citation: Olivier Pinaud. Time reversal of surface plasmons. Discrete and Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2022106
References:
[1]

2D Materials: Properties and Devices. Cambridge University Press, 2017.

[2]

H. Ammari and E. O. Hiltunen, Time-dependent high-contrast subwavelength resonators, J. Comput. Phys., 445 (2021), Paper No. 110594, 18 pp. doi: 10.1016/j.jcp.2021.110594.

[3]

V. BacotM. LabousseA. EddiM. Fink and E. Fort, Time reversal and holography with spacetime transformations, Nature Physics, 12 (2016), 972-977.  doi: 10.1038/nphys3810.

[4]

G. BalM. Fink and O. Pinaud, Time reversal by time-dependent perturbations, SIAM J. Appl. Math., 79 (2019), 754-780.  doi: 10.1137/18M1216894.

[5]

Yu. V. Bludov, A. Ferreira, N. M. R. Peres and M. I. Vasilevskiy, A primer on surface plasmons-polaritons in graphene, Internat. J. Modern Phys. B, 27 (2013), 1341001, 74 pp. doi: 10.1142/S0217979213410014.

[6]

L. BorceaJ. Garnier and K. Solna, Wave propagation and imaging in moving random media, Multiscale Model. Simul., 17 (2019), 31-67.  doi: 10.1137/18M119505X.

[7]

M. Fink, Time reversed acoustics, Physics Today, 50 (1997), 34-40. 

[8]

J. Garnier, Wave propagation in periodic and random time-dependent media, Multiscale Model. Simul., 19 (2021), 1190-1211.  doi: 10.1137/20M1377734.

[9]

K. A. Lurie, An Introduction to the Mathematical Theory of Dynamic Materials, volume 15. Springer, 2007.

[10]

D. Margetis and M. Luskin, On solutions of maxwell's equations with dipole sources over a thin conducting film, J. Math. Phys., 57 (2016), 042903, 32 pp. doi: 10.1063/1.4945083.

[11]

P. A. Martin, Acoustics and dynamic materials, Mechanics Research Communications, 105 (2020), 103502.  doi: 10.1016/j.mechrescom.2020.103502.

[12]

G. W. Milton and O. Mattei, Field patterns: A new mathematical object, Proc. A., 473 (2017), 20160819, 26 pp. doi: 10.1098/rspa.2016.0819.

[13]

O. Pinaud, Instantaneous time mirrors and wave equations with time-singular coefficients, SIAM J. Math. Anal., 53 (2021), 4401-4416.  doi: 10.1137/20M1384361.

[14]

P. ReckC. GoriniA. GoussevV. KruecklM. Fink and K. Richter, Dirac quantum time mirror, Phys. Rev. B, 95 (2017), 165421.  doi: 10.1103/PhysRevB.95.165421.

[15]

P. Reck, C. Gorini, A. Goussev, V. Krueckl, M. Fink and K. Richter, Towards a quantum time mirror for non-relativistic wave packets, New J. Phys., 20 (2018), 033013, 9 pp. doi: 10.1088/1367-2630/aaae98.

[16]

J. WilsonF. Santosa and P. A. Martin, Temporally manipulated plasmons on graphene, SIAM J. Appl. Math., 79 (2019), 1051-1074.  doi: 10.1137/18M1226889.

[17]

J. WilsonF. SantosaM. Min and T. Low, Temporal control of graphene plasmons, Phys. Rev. B, 98 (2018), 081411.  doi: 10.1103/PhysRevB.98.081411.

show all references

References:
[1]

2D Materials: Properties and Devices. Cambridge University Press, 2017.

[2]

H. Ammari and E. O. Hiltunen, Time-dependent high-contrast subwavelength resonators, J. Comput. Phys., 445 (2021), Paper No. 110594, 18 pp. doi: 10.1016/j.jcp.2021.110594.

[3]

V. BacotM. LabousseA. EddiM. Fink and E. Fort, Time reversal and holography with spacetime transformations, Nature Physics, 12 (2016), 972-977.  doi: 10.1038/nphys3810.

[4]

G. BalM. Fink and O. Pinaud, Time reversal by time-dependent perturbations, SIAM J. Appl. Math., 79 (2019), 754-780.  doi: 10.1137/18M1216894.

[5]

Yu. V. Bludov, A. Ferreira, N. M. R. Peres and M. I. Vasilevskiy, A primer on surface plasmons-polaritons in graphene, Internat. J. Modern Phys. B, 27 (2013), 1341001, 74 pp. doi: 10.1142/S0217979213410014.

[6]

L. BorceaJ. Garnier and K. Solna, Wave propagation and imaging in moving random media, Multiscale Model. Simul., 17 (2019), 31-67.  doi: 10.1137/18M119505X.

[7]

M. Fink, Time reversed acoustics, Physics Today, 50 (1997), 34-40. 

[8]

J. Garnier, Wave propagation in periodic and random time-dependent media, Multiscale Model. Simul., 19 (2021), 1190-1211.  doi: 10.1137/20M1377734.

[9]

K. A. Lurie, An Introduction to the Mathematical Theory of Dynamic Materials, volume 15. Springer, 2007.

[10]

D. Margetis and M. Luskin, On solutions of maxwell's equations with dipole sources over a thin conducting film, J. Math. Phys., 57 (2016), 042903, 32 pp. doi: 10.1063/1.4945083.

[11]

P. A. Martin, Acoustics and dynamic materials, Mechanics Research Communications, 105 (2020), 103502.  doi: 10.1016/j.mechrescom.2020.103502.

[12]

G. W. Milton and O. Mattei, Field patterns: A new mathematical object, Proc. A., 473 (2017), 20160819, 26 pp. doi: 10.1098/rspa.2016.0819.

[13]

O. Pinaud, Instantaneous time mirrors and wave equations with time-singular coefficients, SIAM J. Math. Anal., 53 (2021), 4401-4416.  doi: 10.1137/20M1384361.

[14]

P. ReckC. GoriniA. GoussevV. KruecklM. Fink and K. Richter, Dirac quantum time mirror, Phys. Rev. B, 95 (2017), 165421.  doi: 10.1103/PhysRevB.95.165421.

[15]

P. Reck, C. Gorini, A. Goussev, V. Krueckl, M. Fink and K. Richter, Towards a quantum time mirror for non-relativistic wave packets, New J. Phys., 20 (2018), 033013, 9 pp. doi: 10.1088/1367-2630/aaae98.

[16]

J. WilsonF. Santosa and P. A. Martin, Temporally manipulated plasmons on graphene, SIAM J. Appl. Math., 79 (2019), 1051-1074.  doi: 10.1137/18M1226889.

[17]

J. WilsonF. SantosaM. Min and T. Low, Temporal control of graphene plasmons, Phys. Rev. B, 98 (2018), 081411.  doi: 10.1103/PhysRevB.98.081411.

Figure 1.  Left panel: Comparison exact/asymptotic expressions of $ \mathcal J_P $. The lines represent the exact expression, and the stars the approximate one. Right panel: representation of $ \mathcal J_P $ for several $ \zeta $. Observe the peaked behavior around $ r = 0 $ for small $ \zeta $
Figure 2.  Absolute value of $ \mathcal J_P $ (normalized to one). Left panel: $ cT = 5z_0 $, $ z_0 = 10\ell_0 $. Right panel: $ cT = 15z_0 $, $ z_0 = 10\ell_0 $. Observe the loss of resolution with the increased $ T $
Figure 3.  Comparison exact/asymptotic expressions for the complex root $ s_+ $
[1]

Kenrick Bingham, Yaroslav Kurylev, Matti Lassas, Samuli Siltanen. Iterative time-reversal control for inverse problems. Inverse Problems and Imaging, 2008, 2 (1) : 63-81. doi: 10.3934/ipi.2008.2.63

[2]

Rodrigo I. Brevis, Jaime H. Ortega, David Pardo. A source time reversal method for seismicity induced by mining. Inverse Problems and Imaging, 2017, 11 (1) : 25-45. doi: 10.3934/ipi.2017002

[3]

Albert Fannjiang, Knut Solna. Time reversal of parabolic waves and two-frequency Wigner distribution. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 783-802. doi: 10.3934/dcdsb.2006.6.783

[4]

Kazufumi Ito, Karim Ramdani, Marius Tucsnak. A time reversal based algorithm for solving initial data inverse problems. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 641-652. doi: 10.3934/dcdss.2011.4.641

[5]

Corinna Burkard, Aurelia Minut, Karim Ramdani. Far field model for time reversal and application to selective focusing on small dielectric inhomogeneities. Inverse Problems and Imaging, 2013, 7 (2) : 445-470. doi: 10.3934/ipi.2013.7.445

[6]

Y. Charles Li, Hong Yang. On the arrow of time. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1287-1303. doi: 10.3934/dcdss.2014.7.1287

[7]

Chihurn Kim, Dong Han Kim. On the law of logarithm of the recurrence time. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 581-587. doi: 10.3934/dcds.2004.10.581

[8]

Arno Berger. On finite-time hyperbolicity. Communications on Pure and Applied Analysis, 2011, 10 (3) : 963-981. doi: 10.3934/cpaa.2011.10.963

[9]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[10]

Anna Maria Cherubini, Giorgio Metafune, Francesco Paparella. On the stopping time of a bouncing ball. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 43-72. doi: 10.3934/dcdsb.2008.10.43

[11]

Lijun Zhang, Xiangshuo Liu, Chaohong Pan. Studies on reversal permanent charges and reversal potentials via classical Poisson-Nernst-Planck systems with boundary layers. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022013

[12]

S. Mohamad, K. Gopalsamy. Neuronal dynamics in time varying enviroments: Continuous and discrete time models. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 841-860. doi: 10.3934/dcds.2000.6.841

[13]

Linna Li, Changjun Yu, Ning Zhang, Yanqin Bai, Zhiyuan Gao. A time-scaling technique for time-delay switched systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1825-1843. doi: 10.3934/dcdss.2020108

[14]

Bernard Ducomet, Šárka Nečasová. Thermalization time in a model of neutron star. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 801-818. doi: 10.3934/dcdsb.2011.16.801

[15]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks and Heterogeneous Media, 2021, 16 (1) : 31-47. doi: 10.3934/nhm.2020032

[16]

Tomáš Gedeon. Attractors in continuous –time switching networks. Communications on Pure and Applied Analysis, 2003, 2 (2) : 187-209. doi: 10.3934/cpaa.2003.2.187

[17]

Giovanni Colombo, Khai T. Nguyen. On the minimum time function around the origin. Mathematical Control and Related Fields, 2013, 3 (1) : 51-82. doi: 10.3934/mcrf.2013.3.51

[18]

Marek Bodnar, Urszula Foryś. Time Delay In Necrotic Core Formation. Mathematical Biosciences & Engineering, 2005, 2 (3) : 461-472. doi: 10.3934/mbe.2005.2.461

[19]

Małgorzata Wyrwas, Dorota Mozyrska, Ewa Girejko. Subdifferentials of convex functions on time scales. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 671-691. doi: 10.3934/dcds.2011.29.671

[20]

Eskil Hansen, Alexander Ostermann. Dimension splitting for time dependent operators. Conference Publications, 2009, 2009 (Special) : 322-332. doi: 10.3934/proc.2009.2009.322

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (75)
  • HTML views (34)
  • Cited by (0)

Other articles
by authors

[Back to Top]