doi: 10.3934/dcdsb.2022139
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Weak solutions to an initial-boundary value problem for a continuum equation of motion of grain boundaries

1. 

Department of Mathematics, Shanghai University, Shanghai 200444, China

2. 

Department of Mathematics, Hong Kong University of Science and Technology, Clear water bay, Kowloon, Hong Kong

3. 

HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China

*Corresponding author: Yang Xiang

Received  April 2022 Revised  June 2022 Early access August 2022

Fund Project: The work of P. C. Zhu was supported in part by Science and Technology Commission of Shanghai Municipality (Grant No. 20JC1413600). The work of Y. Xiang was supported by the Hong Kong Research Grants Council General Research Fund 16302818 and Collaborative Research Fund C1005-19G, and the Project of Hetao Shenzhen-HKUST Innovation Cooperation Zone HZQB-KCZYB-2020083

We investigate an initial-(periodic-)boundary value problem for a continuum equation, which is a model for motion of grain boundaries based on the underlying microscopic mechanisms of line defects (disconnections) and integrated the effects of a diverse range of thermodynamic driving forces. We first prove the global-in-time existence and uniqueness of weak solution to this initial-boundary value problem in the case with positive equilibrium disconnection density parameter $ B $, and then investigate the asymptotic behavior of the solutions as $ B $ goes to zero. The main difficulties in the proof of main theorems are due to the degeneracy of $ B=0 $, a non-local term with singularity, and a non-smooth coefficient of the highest derivative associated with the gradient of the unknown. The key ingredients in the proof are the energy method, an estimate for a singular integral of the Hilbert type, and a compactness lemma.

Citation: Peicheng Zhu, Lei Yu, Yang Xiang. Weak solutions to an initial-boundary value problem for a continuum equation of motion of grain boundaries. Discrete and Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2022139
References:
[1]

A. AcharyaK. Matthies and J. Zimmer, Traveling wave solutions for a quasilinear model of field dislocation mechanics, J. Mech. Phys. Solids., 58 (2010), 2043-2053.  doi: 10.1016/j.jmps.2010.09.008.

[2]

H.-D. Alber and P. Zhu, Solutions to a model with nonuniformly parabolic terms for phase evolution driven by configurational forces, SIAM J. Appl. Math., 66 (2006), 680-699.  doi: 10.1137/050629951.

[3]

H.-D. Alber and P. Zhu, Evolution of phase boundaries by configurational forces, Arch. Rati. Mech. Anal., 185 (2007), 235-286.  doi: 10.1007/s00205-007-0054-8.

[4]

H.-D. Alber and P. Zhu, Solutions to a model for interface motion by interface diffusion, Proc. Roy. Soc. Edin., A138 (2008), 923-955.  doi: 10.1017/S0308210507000170.

[5]

H.-D. Alber and P. Zhu, Interface motion by interface diffusion driven by bulk energy: Justification of a diffusive interface model, Conti. Mech. Thermodyn., 23 (2011), 139-176.  doi: 10.1007/s00161-010-0162-9.

[6]

H.-D. Alber and P. Zhu, Solutions to a model with neumann boundary conditions for phase transitions driven by configurational forces, Nonlinear Anal. RWA., 12 (2011), 1797-1809.  doi: 10.1016/j.nonrwa.2010.11.012.

[7]

M. F. Ashby, Boundary defects, and atomistic aspects of boundary sliding and diffusional creep, Surf. Sci., 31 (1972), 498-542. 

[8]

J. W. Cahn and S. M. Allen, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979), 1085-1095. 

[9]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. interfacial free energy, J. Chem. Phys., 28 (1958), 258-267. 

[10]

J. W. Cahn and J. E. Taylor, A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation, Acta Mater., 52 (2004), 4887-4898. 

[11]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Grundlehren der Mathematischen Wissenschaften Vol. 224, Springer-Verlag Berlin Heidelberg, 1983. doi: 10.1007/978-3-642-61798-0.

[12]

F. Hildebrand and C. Miehe, A regularized sharp-interface model for phase transformation accounting for prescribed sharp-interface kinetics, Proc. Appl. Math. Mech., 10 (2010), 673-676. 

[13]

J. P. Hirth and J. Lothe, Theory of Dislocations, , 2nd edition, John Wiley, New York, 1982.

[14]

J. P. Hirth and R. C. Pond, Steps, dislocations and disconnections as interface defects relating to structure and phase transformations, Acta Mater., 44 (1996), 4749-4763. 

[15]

J. P. HirthR. C. Pond and J. Lothe, Spacing defects and disconnections in grain boundaries, Acta Mater., 55 (2007), 5428-5437. 

[16]

K. G. F. JanssensD. OlmstedE. A. HolmS. M. FoilesS. J. Plimpton and P. M. Derlet, Computing the mobility of grain boundaries, Nat. Mater., 5 (2006), 124-127. 

[17]

A. H. King and D. A. Smith, The effects on grain-boundary processes of the steps in the boundary plane associated with the cores of grain-boundary dislocations, Acta Cryst., A36 (1980), 335-343. 

[18]

O. A. Ladyžhenskaya, V. A. Solonnikov and N. N. Ural'Tseva, Linear and Quasi-Linear Equations of Parabolic Type, American Mathematical Society, 1968.

[19]

C. H. LiE. H. EdwardsJ. Washburn and E. R. Parker, Stress-induced movement of crystal boundaries, Acta Metall., 1 (1953), 223-229. 

[20]

J. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Lineaires, Dunod Gauthier-Villars, Paris, 1969.

[21]

K. L. MerkleL. J. Thompson and F. Phillipp, In-Situ HREM Studies of Grain Boundary Migration, Interface Sci., 12 (2004), 277-292. 

[22]

A. RajabzadehM. LegrosN. CombeF. Mompiou and D. A. Molodov, Evidence of grain boundary dislocation step motion associated to shear-coupled grain boundary migration, Phil. Mag., 93 (2013), 1299-1316. 

[23]

A. RajabzadehF. MompiouM. Legros and N. Combe, Elementary mechanisms of shear-coupled grain boundary migration, Phys. Rev. Lett., 110 (2013), 265507. 

[24]

T. Roubiček, A generalization of the Lions-Temam compact imbedding theorem, Časopis pro Pěst. Mat., 115 (1990), 338–342.

[25]

J. Simon, Compact sets in the space $L^{p}(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.

[26] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1970. 
[27] A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materials, Oxford University Press, New York, 1995. 
[28]

S. ThomasK. ChenJ. HanP. Purohit and D. J. Srolovitz, Reconciling grain growth and shear-coupled grain boundary migration, Nature Commun., 8 (2017), 1764. 

[29]

C. WeiS. ThomasJ. HanD. J. Srolovitz and Y. Xiang, A continuum multi-disconnection-mode model for grain boundary migration, J. Mech. Phys. Solids, 133 (2019), 103731.  doi: 10.1016/j.jmps.2019.103731.

[30]

C. WeiL. ZhangJ. HanD. J. Srolovitz and Y. Xiang, Grain boundary triple junction dynamics: A continuum disconnection model, SIAM J. Appl. Math., 80 (2020), 1101-1122.  doi: 10.1137/19M1277722.

[31]

M. WinningG. Gottstein and L. Shvindlerman, Stress induced grain boundary motion, Acta Mater., 49 (2001), 211-219. 

[32]

Y. Xiang, Modeling dislocations at different scales, Commun. Comput. Phys., 1 (2006), 383-424. 

[33]

L. ZhangJ. HanD. J. Srolovitz and Y. Xiang, Equation of motion for grain boundaries in polycrystals, npj Comput. Mater., 7 (2021), 64. 

[34]

L. ZhangJ. HanY. Xiang and D. J. Srolovitz, Equation of motion for a grain boundary, Phys. Rev. Lett., 119 (2017), 246101. 

[35]

P. Zhu, Solvability via viscosity solutions for a model of phase transitions driven by configurational forces, J. Diff. Eqs., 251 (2011), 2833-2852.  doi: 10.1016/j.jde.2011.05.035.

[36]

P. Zhu, Solid-Solid Phase Transitions Driven by Configurational Forces: A phase-Field Model and Its Validity, LAMBERT Academic Publishing (LAP), July, 2011.

[37]

P. Zhu, Regularity of solutions to a model for solid phase transitions driven by configurational forces, J. Math. Anal. Appl., 389 (2012), 1159-1172.  doi: 10.1016/j.jmaa.2011.12.052.

show all references

References:
[1]

A. AcharyaK. Matthies and J. Zimmer, Traveling wave solutions for a quasilinear model of field dislocation mechanics, J. Mech. Phys. Solids., 58 (2010), 2043-2053.  doi: 10.1016/j.jmps.2010.09.008.

[2]

H.-D. Alber and P. Zhu, Solutions to a model with nonuniformly parabolic terms for phase evolution driven by configurational forces, SIAM J. Appl. Math., 66 (2006), 680-699.  doi: 10.1137/050629951.

[3]

H.-D. Alber and P. Zhu, Evolution of phase boundaries by configurational forces, Arch. Rati. Mech. Anal., 185 (2007), 235-286.  doi: 10.1007/s00205-007-0054-8.

[4]

H.-D. Alber and P. Zhu, Solutions to a model for interface motion by interface diffusion, Proc. Roy. Soc. Edin., A138 (2008), 923-955.  doi: 10.1017/S0308210507000170.

[5]

H.-D. Alber and P. Zhu, Interface motion by interface diffusion driven by bulk energy: Justification of a diffusive interface model, Conti. Mech. Thermodyn., 23 (2011), 139-176.  doi: 10.1007/s00161-010-0162-9.

[6]

H.-D. Alber and P. Zhu, Solutions to a model with neumann boundary conditions for phase transitions driven by configurational forces, Nonlinear Anal. RWA., 12 (2011), 1797-1809.  doi: 10.1016/j.nonrwa.2010.11.012.

[7]

M. F. Ashby, Boundary defects, and atomistic aspects of boundary sliding and diffusional creep, Surf. Sci., 31 (1972), 498-542. 

[8]

J. W. Cahn and S. M. Allen, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979), 1085-1095. 

[9]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. interfacial free energy, J. Chem. Phys., 28 (1958), 258-267. 

[10]

J. W. Cahn and J. E. Taylor, A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation, Acta Mater., 52 (2004), 4887-4898. 

[11]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Grundlehren der Mathematischen Wissenschaften Vol. 224, Springer-Verlag Berlin Heidelberg, 1983. doi: 10.1007/978-3-642-61798-0.

[12]

F. Hildebrand and C. Miehe, A regularized sharp-interface model for phase transformation accounting for prescribed sharp-interface kinetics, Proc. Appl. Math. Mech., 10 (2010), 673-676. 

[13]

J. P. Hirth and J. Lothe, Theory of Dislocations, , 2nd edition, John Wiley, New York, 1982.

[14]

J. P. Hirth and R. C. Pond, Steps, dislocations and disconnections as interface defects relating to structure and phase transformations, Acta Mater., 44 (1996), 4749-4763. 

[15]

J. P. HirthR. C. Pond and J. Lothe, Spacing defects and disconnections in grain boundaries, Acta Mater., 55 (2007), 5428-5437. 

[16]

K. G. F. JanssensD. OlmstedE. A. HolmS. M. FoilesS. J. Plimpton and P. M. Derlet, Computing the mobility of grain boundaries, Nat. Mater., 5 (2006), 124-127. 

[17]

A. H. King and D. A. Smith, The effects on grain-boundary processes of the steps in the boundary plane associated with the cores of grain-boundary dislocations, Acta Cryst., A36 (1980), 335-343. 

[18]

O. A. Ladyžhenskaya, V. A. Solonnikov and N. N. Ural'Tseva, Linear and Quasi-Linear Equations of Parabolic Type, American Mathematical Society, 1968.

[19]

C. H. LiE. H. EdwardsJ. Washburn and E. R. Parker, Stress-induced movement of crystal boundaries, Acta Metall., 1 (1953), 223-229. 

[20]

J. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Lineaires, Dunod Gauthier-Villars, Paris, 1969.

[21]

K. L. MerkleL. J. Thompson and F. Phillipp, In-Situ HREM Studies of Grain Boundary Migration, Interface Sci., 12 (2004), 277-292. 

[22]

A. RajabzadehM. LegrosN. CombeF. Mompiou and D. A. Molodov, Evidence of grain boundary dislocation step motion associated to shear-coupled grain boundary migration, Phil. Mag., 93 (2013), 1299-1316. 

[23]

A. RajabzadehF. MompiouM. Legros and N. Combe, Elementary mechanisms of shear-coupled grain boundary migration, Phys. Rev. Lett., 110 (2013), 265507. 

[24]

T. Roubiček, A generalization of the Lions-Temam compact imbedding theorem, Časopis pro Pěst. Mat., 115 (1990), 338–342.

[25]

J. Simon, Compact sets in the space $L^{p}(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.

[26] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1970. 
[27] A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materials, Oxford University Press, New York, 1995. 
[28]

S. ThomasK. ChenJ. HanP. Purohit and D. J. Srolovitz, Reconciling grain growth and shear-coupled grain boundary migration, Nature Commun., 8 (2017), 1764. 

[29]

C. WeiS. ThomasJ. HanD. J. Srolovitz and Y. Xiang, A continuum multi-disconnection-mode model for grain boundary migration, J. Mech. Phys. Solids, 133 (2019), 103731.  doi: 10.1016/j.jmps.2019.103731.

[30]

C. WeiL. ZhangJ. HanD. J. Srolovitz and Y. Xiang, Grain boundary triple junction dynamics: A continuum disconnection model, SIAM J. Appl. Math., 80 (2020), 1101-1122.  doi: 10.1137/19M1277722.

[31]

M. WinningG. Gottstein and L. Shvindlerman, Stress induced grain boundary motion, Acta Mater., 49 (2001), 211-219. 

[32]

Y. Xiang, Modeling dislocations at different scales, Commun. Comput. Phys., 1 (2006), 383-424. 

[33]

L. ZhangJ. HanD. J. Srolovitz and Y. Xiang, Equation of motion for grain boundaries in polycrystals, npj Comput. Mater., 7 (2021), 64. 

[34]

L. ZhangJ. HanY. Xiang and D. J. Srolovitz, Equation of motion for a grain boundary, Phys. Rev. Lett., 119 (2017), 246101. 

[35]

P. Zhu, Solvability via viscosity solutions for a model of phase transitions driven by configurational forces, J. Diff. Eqs., 251 (2011), 2833-2852.  doi: 10.1016/j.jde.2011.05.035.

[36]

P. Zhu, Solid-Solid Phase Transitions Driven by Configurational Forces: A phase-Field Model and Its Validity, LAMBERT Academic Publishing (LAP), July, 2011.

[37]

P. Zhu, Regularity of solutions to a model for solid phase transitions driven by configurational forces, J. Math. Anal. Appl., 389 (2012), 1159-1172.  doi: 10.1016/j.jmaa.2011.12.052.

[1]

Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 59-78. doi: 10.3934/dcds.2005.12.59

[2]

Xiaoyun Cai, Liangwen Liao, Yongzhong Sun. Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 917-923. doi: 10.3934/dcdss.2014.7.917

[3]

Peng Jiang. Unique global solution of an initial-boundary value problem to a diffusion approximation model in radiation hydrodynamics. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3015-3037. doi: 10.3934/dcds.2015.35.3015

[4]

Gilles Carbou, Bernard Hanouzet. Relaxation approximation of the Kerr model for the impedance initial-boundary value problem. Conference Publications, 2007, 2007 (Special) : 212-220. doi: 10.3934/proc.2007.2007.212

[5]

Xianpeng Hu, Dehua Wang. The initial-boundary value problem for the compressible viscoelastic flows. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 917-934. doi: 10.3934/dcds.2015.35.917

[6]

Akio Ito, Nobuyuki Kenmochi, Noriaki Yamazaki. Global solvability of a model for grain boundary motion with constraint. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 127-146. doi: 10.3934/dcdss.2012.5.127

[7]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[8]

Martn P. Árciga Alejandre, Elena I. Kaikina. Mixed initial-boundary value problem for Ott-Sudan-Ostrovskiy equation. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 381-409. doi: 10.3934/dcds.2012.32.381

[9]

Türker Özsarı, Nermin Yolcu. The initial-boundary value problem for the biharmonic Schrödinger equation on the half-line. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3285-3316. doi: 10.3934/cpaa.2019148

[10]

Michal Beneš. Mixed initial-boundary value problem for the three-dimensional Navier-Stokes equations in polyhedral domains. Conference Publications, 2011, 2011 (Special) : 135-144. doi: 10.3934/proc.2011.2011.135

[11]

Haifeng Hu, Kaijun Zhang. Analysis on the initial-boundary value problem of a full bipolar hydrodynamic model for semiconductors. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1601-1626. doi: 10.3934/dcdsb.2014.19.1601

[12]

Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3749-3778. doi: 10.3934/dcdsb.2021205

[13]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure and Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[14]

Xu Liu, Jun Zhou. Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity. Electronic Research Archive, 2020, 28 (2) : 599-625. doi: 10.3934/era.2020032

[15]

Linglong Du, Caixuan Ren. Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $\mathbb{R}_{+}^{n} $. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3265-3280. doi: 10.3934/dcdsb.2018319

[16]

M.J. Lopez-Herrero. The existence of weak solutions for a general class of mixed boundary value problems. Conference Publications, 2011, 2011 (Special) : 1015-1024. doi: 10.3934/proc.2011.2011.1015

[17]

Linh Nguyen, Irina Perfilieva, Michal Holčapek. Boundary value problem: Weak solutions induced by fuzzy partitions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 715-732. doi: 10.3934/dcdsb.2019263

[18]

Anya Désilles, Hélène Frankowska. Explicit construction of solutions to the Burgers equation with discontinuous initial-boundary conditions. Networks and Heterogeneous Media, 2013, 8 (3) : 727-744. doi: 10.3934/nhm.2013.8.727

[19]

Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure and Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759

[20]

Nobuyuki Kenmochi, Noriaki Yamazaki. Global attractor of the multivalued semigroup associated with a phase-field model of grain boundary motion with constraint. Conference Publications, 2011, 2011 (Special) : 824-833. doi: 10.3934/proc.2011.2011.824

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (65)
  • HTML views (88)
  • Cited by (0)

Other articles
by authors

[Back to Top]